Prepared for The City of Wichita, Kansas

Table of Contents

Ref. Sym. TITLE PAGE AND FOUNDATION INDEX PAGE 0.0

GENERAL NOTES: PAGE 0.1

General notes for all details are located on this page keyed by a number designation, inside a hexagon symbol.

SOIL AND BACKFILL MATERIAL STANDARDS: PAGE 0.2

Soil and Backfill notes for all details are located on this page keyed by a letter designation, inside a square symbol.

COMMON NOTES and FOUNDATION STANDARDS: PAGE 0.2 & 0.3

General notes for all details are located on this page keyed by a letter & number designation, inside a triangle symbol.

FOUNDATION TYPE 1.0, Mono Pour Foundation & Slab: PAGE 1.0

1.0 General MONO-POUR assembly standards.

FOUNDATION TYPE 2.0 Grade Beam & Slab: PAGE 2.0

2.0 General GRADE BEAM & SLAB assembly standards.

FOUNDATION TYPE 3.0 Footing, Stem Wall & Slab: PAGE 3.0

3.0 General FOOTING, STEM WALL & SLAB assembly standards.

FOUNDATION TYPE 3.1 Garage Frost Wall & Slab: PAGE 3.1

3.1 Foundation for Garage Slab and Stem Wall

FOUNDATION TYPE 4.0 Basement Foundation: PAGE 4.0

4.0 General BASEMENT assembly standards.

FOUNDATION TYPE 3.0 Walk-out Basement Slab Edges: PAGE 3.0

BASEMENT SLAB EDGES & FOUNDATIONS at WALK-OUT PERIMETERS shall be constructed using Detail 1, Type 3.0a Stem Wall & Slab construction assembly criteria located on Page 3.0 of these standards

FOUNDATION TYPE 5.0 Other Foundation Assemblies: PAGE 5.0

5.0 General FOOTING AND STEM WALL for CRAWL SPACE

FOUNDATION SECTION & DETAIL STANDARDS: PAGES 6.0 - 6.2

6.0 Supplemental and Alternative Details.

FOUNDATION & SLAB SITE CONDITIONS: PAGE 7.0

This section addressed environmental impacts on foundation, slab placement and long term performance.

IMPORTANT NOTE: Details in this reference material are not to scale. They are intended to represent general construction assemblies for the purpose of identifying minimum construction standards. As such, the contractor must evaluate each project and circumstance applying higher performance, as may be required, to insure that both the safety and quality of the final product reflects and promotes the integrity of the construction industry.
SITE & PROJECT STANDARDS:

01 STATEMENT OF PURPOSE
These guidelines for residential construction of concrete foundations and slabs represent minimum, code compliant, and recommended design standards. These standards include new construction and additions to existing structures. These standards do not apply to non-inhabitable, detached, structures. All attached structures (including garages) must follow these guidelines. It is always the responsibility of the contractor to evaluate the scope and circumstances of each project and retain professional advise on any areas of concern including foundation and slab design.

02 Slab-on-grade PROJECT SOIL ANALYSIS:
GENERAL MAKEUP OF EXISTING SITE SOILS: Native soil type and characteristics require two (2) physical samples for testing. Each soil sample shall be approximately 8oz to 12oz sealed in a zip-lock plastic bag. Sample material shall be taken from 12" to 18" below grade of habitable living areas at diagonal corners within footprint of proposed structure or addition. Plasticity index (PI) report from soils engineer is required with permitting request. This PI report establishes the minimum required depth of footings below finish grade and will be attached to the permit application. (Important note: Soil sampling is not required for basement construction, walk-out basement construction or non-habitable structures and spaces such as garages, non-heated sheds, etc.)

03 PLASTICITY INDEX AND FOOTING DEPTH
THE IMPACT OF A SOILS PLASTICITY INDEX (PI) ON FOUNDATIONS: Native soil type and characteristics impact the performance of foundations. These variations in the soil affect frost depth, expansiveness, movement and are generally set in motion as a result of the amount of moisture these soil types are subjected to. Variations of moisture levels can cause dramatic soil movement capable of damaging even well designed foundation systems. These design standards are intended to generally address the various soil types present in the Wichita / Sedgwick County geographical region. Refer to sheet 7.0.

04 SITE & FOUNDATION MOISTURE
THE CONTROL OF SURFACE DRAINAGE IS CRITICAL IN MINIMIZING THE POTENTIAL FOR FOUNDATION DAMAGE AS A RESULT OF MOISTURE: Proper building site pad elevation and strict adherence to the overall sub-division development drainage plan is mandatory. In the absence of such an engineered drainage plan it is recommended that professional input on building site development be retained. While many uncontrollable environmental factors influence soil (can’t top)

05 (con’t) conditions including weather, vegetation and exposure, poorly sited buildings with poor drainage plans are most susceptible to water & foundation damage.

06 OWNER EDUCATION ON MAINTENANCE:
OWNERSHIP OF PROPERTIES REQUIRES UPKEEP AND MAINTENANCE: It is natural for soil materials at the perimeter of a building to settle over time. This settlement is ongoing and takes place over many years. In much the same up-keep sequence as painting, owners of properties should accept the fact that additional soil material will be required to maintain proper surface drainage. Good drainage away for the building perimeter, including downspout and sump pump extensions will minimize the threat of foundation problems resulting from water trapped against the slab or basement wall edges.

07 SITE CONDITIONS FOR PLACEMENT:
REFERENCE SHEET 7.0:
Soil “b” material acts as both a leveling element for the slab and as a buffer against the movement characteristics of Soil “a”. Increasing the depth of Soil “b” with increased PI rating of below grade soils is ALWAYS recommended. Consult a professional if PI soil materials above 45 or if site conditions suggest questionable or inconsistent bearing performance circumstances.

08 FIBER REINFORCING:
Fiber materials are intended as a shrinkage and non-structural cracking control additive. These materials do not replace the requirements for steel reinforcing wire fabric materials or reinforcing bar, etc. Consult a Kansas design professional for recommendations on appropriate fiber material performance.

09 TECHNICAL INSTALLATION STANDARDS:
The contractor assumes responsibility for construction techniques, methods, standards and solutions implemented under his direction. He further assumes responsibility for recognizing and building in accordance with adopted codes, standards and guidelines as well as following the plans and specific recommendations of professionally prepared documents and specifications, if any, for a specific project. If criteria is found to be in conflict, use the more stringent standard or consult a Kansas design professional.

09 CONCRETE INSPECTIONS:
SLAB-ON-GRADE construction:
1) Footing: Trench, String-line perimeter & bearing;
2) Pre-Slab Pour: Sub-Grade, Grade Stakes, Reinforcing.
BASEMENT construction:
1) Footing: Footing & Rebar;
2) Wall: Sub-Grade, Grade Stakes, Reinforcing, Utilities;
3) Floor: Basement & Garage.
See City & County for detailed information & requirements.
Common Notes & Foundation Standards

Soil & Backfill Material Standards:

Existing Site Soils: See General note A2 for required analysis of local existing, native soil. This analysis is required in order to establish PI index which determines minimum required depth foundation assembly below finished grade.

Below Slab Fill Material: Compacted Sand, Pea Gravel, or other approved Stabilizing Materials (i.e. AB3, etc.). Compacted substrap materials do not require testing, however, it is considered normal practice to insure that any substrate material is properly prepared for the next stage of construction. Failure to compact base materials can undermine bearing capacity, effect concrete performance, finishing and result in undesirable cosmetic or structural flaws.

Common Notes for Foundation Standards:

Footings shall be continuous on all sides of structure with bearing in minimum 1500 psf undisturbed soil or a controlled and tested fill.

Do not place patio or driveway slabs on the fill next to ANY wall unless supported either on supporting ledges, on dowels or by supporting columns carried down to the adjacent footings bottom.

Ufer ground shall be installed in all structural footings. Contact inspection department for criteria for proper installation.

Do not backfill an unsupported straight run of wall over 16' in length (Measured between corners and cross walls or supporting buttresses) unless adequate bracing is provided or the wall framing has been set in place and anchor bolts tightened. Reference details D1 & D2, sht 6.1.

Backfill only against sufficiently reinforced and cured concrete. No heavy wheel loading adjacent to the wall shall be allowed. Basement walls are NOT designed as retaining walls, reference details A2, sht 6.0 for laterally unsupported wall design criteria.

There shall be a minimum dimension from finished grade to top of concrete foundation or slab of 6" minimum. If sod is to be installed adjacent the foundation, this dimension shall be 8" minimum to allow for depth of sod material.

Surround the drain tiles with 12" min., both depth & width, of coarse washed sands (Road gravel). Crushed limestone is not acceptable. All drain tile shall be 3" or 4" and covered with sock or filter cloth. See Soil Type "e".

Finish Grade Material: Topsoil. See Common note A3 for required slope away from foundation perimeter and Common note A4 for required dimension below top of concrete wall or finished slab elevation.

Foundation Backfill Material: Backfill with loose, uniform soil preferably slightly damp. Use only material that is free from organic material, debris and large clumps (6" max.). Fill perimeter uniformly in lifts of 24" maximum. If additional soil materials from off site are required, soil shall be of same makeup as local material, Soil Type "a".

Foundation Fill Material at Footing Drainage Material: Coarse washed sand or washed river rock. Do not use fine sand fill material on exterior drainage tile.

Excavated soil material shall not be used as fill below concrete slabs including garage slabs unless properly placed, and tested for bearing performance. Imported material used for fill below any slab shall be of soil type B or as specified by a licensed professional consultant. All fill shall be distributed below concrete slabs in layers, filling all voids, with each properly compacted in sequence.

Vegetation and organic top soil material shall be completely removed from building site areas to receive concrete slab and foundation assembles. Do not place below slab fill and preparation materials over organic materials.

All concrete shall have a minimum 28 days compressive strength of 3500 psi for exterior slabs and 3000 psi for interior slabs, walls and footings.

Concrete shall have a 5" maximum slump at the end of the chute or an 8" maximum slump if a high range water reducer is added.

Exterior and Interior drain tiles shall be continuous around footings placed as illustrated with silt protective "sock". Interior and exterior systems shall be independent with no connection. Interior and Exterior systems may discharge into same sump pump pit or gravity flow to exterior discharge. Insure that the discharge location provides for positive drainage away from foundation edge. Mechanically pumped discharge should include pipe or soid trough that carries drain-water past the original basement over-dig or 5' whichever is greater. (Ref Detail E2/6.1 for secondary sump installation option.)

(Common Notes Continued on Page 0.3)
COMMON NOTES FOR FOUNDATIONS:

(COMMON NOTES CONTINUED FROM PAGE 0.2)

To assure adequate drainage away from the foundation, grade away from the foundation shall slope at a recommended rate of 1" per ft. for 6 ft. minimum. Positive drainage shall then be maintained beyond in accordance with the development drainage plan. All drainage shall be maintained at a 1/4" per ft. minimum. Use of soil type "c", organic top soil is limited to 4" within 6' of perimeter to insure a positive drainage "cap" of native material below. Backfill below the topsoil layer, whether on-site or imported, materials, shall be consistent in make-up to existing local soil materials generally equal to Soil Type "a".

Site irrigation systems adjacent foundations present a substantial source for the introduction of moisture into expansive sub-soils and resulting damage. Systems should be routinely balanced, inspected and maintained to limit and control this risk.

Underslab utilities shall be installed with at least a 4" cover of compacted sand material between the bottom of the slab and top of utility line.

Basement walls above 9'-0" in height, measured from top of footing to top of concrete wall shall be designed and sealed by a Kansas design professional.

Foundation LOADING LEVEL DEFINITIONS include maximum span and tributary loading limits as defined in the graphics below. Spans or loading conditions in excess of these "LEVELS" shall be reviewed by a licensed Kansas design professional.

![Diagram of loading levels](image)

TABLE A - FOUNDATION INSULATION STANDARDS

<table>
<thead>
<tr>
<th>Construction Type</th>
<th>Continuous or Framing</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Foundation Insulation</td>
<td>R-10</td>
</tr>
<tr>
<td>Crawl Space Insulation</td>
<td>R-10</td>
</tr>
<tr>
<td>Slab Insulation</td>
<td>R-10 to a min 24" depth</td>
</tr>
</tbody>
</table>

* See Detail E1/6.1 for basement foundation insulation options.

To meet the long term insulation value required by IRC/IECC-2006, exposed R10 insulation at foundation and slab edges should be protected from damage during the construction process and then flashed or otherwise finished at the completion of the project to protect against deterioration.

Seal tie holes and cracks with fiber sealant before dampproofing.

One coat dampproofing minimum shall be applied in soils with PI of 15 and below and two coats, or equivalent shall be applied in all soil types with PI above 15. Waterproofing material shall extend from top of wall to base of wall and horizontally on top of footing to seal joint a wall base. All horizontal bars shall lap a minimum of 18" at ends, splices, and around corners.

Set anchor bolts at the spacing shown on the wall sections in attached drawing, preferably by templates secured to the forms before concrete is placed, to assure proper placement.

The placement of vertical and horizontal steel shall be in accordance with specific foundation type standards documented in these standards. Reference foundation type.

Reinforcing mesh shall overlap a minimum of 6" and shall extend to within 3" of perimeter edge of concrete. The use of proper positioning devices for slab reinforcing (mesh or rebar) is encouraged, however, pulling reinforcing, where applicable, to the proper final location is acceptable.

Where slab construction in poured adjacent foundation walls forming an unsupported "floating slab" (Similar to Det F1/6.2), ½" min. diameter reinforcing bars, 16" min. in length spaced at 32" max o.c., shall be drilled a minimum of 4" into perimeter bearing wall and extend into the center of the adjacent slab. Thicken edge of slab as required for 1½" coverage of rebar top and bottom. Rebar material may be smooth.

The IRC/IECC-2006 requires minimum insulation performance at various elements of exterior construction assemblies. Foundation and Slab Insulation standards are included. Locally, energy standards are not officially inspected, however, Kansas Law (KSA 66-1228) requires that builder's must disclose to buyers the amount of insulation they installed beside the minimum value required by code on the Kansas Energy Efficiency Disclosure form. Energy Star requires insulation on all foundation types including slab-on-grade in our zone. If no insulation is included as per the standard, a zero must be disclosed. The following table shows insulation values for the various types of foundations:
FOUNDATION TYPE 1.0 DETAIL NOTES:

1a. Fndn Type 1.0 / Mono Pour Foundation type.

2. For all note "2" dimensional standards (a thru d), reference the table on this page.

3. Reference Soil & Backfill standards for these material types:
 - Soil a
 - Soil b
 - Soil c

4. Reference specifically these Common Notes for type 1.0 fndn:
 - A1 thru A3
 - B1 thru B6
 - C1
 - C2
 - D1 thru D4
 - R1 thru R5
 - T1 thru T2

5. Steel reinforcing and anchoring standards:
 a) #4 horizontal continuous at P1<16, 4-#4 at P1 16+.
 b) #4 vertical @ 30" o.c. max. centers, center in footing. (Hook 24" into slab)
 c) Anchor bolts, see note 7.
 d) Slab reinforcement: 6x6-w1.4 x w1.4 WWF (6x6 - 10x10 mesh), center in slab.
 e) Slab reinforcement: 6x6-w2.9 x w2.9 WWF in sheets (6x6 - 6x6 mesh), center in slab.
 f) Slab reinforcement: #4 @ 24" o.c. each way, center in slab or approved post tensioning system.

6. All foundations must extend 12" min. into undisturbed soil free of vegetation or into engineered controlled fill materials. Foundations or grade beams may also be supported on concrete piers extending into deeper bearing material. These systems to be designed and sealed by a Kansas design professional.

7. Min. 2x4 PL w/ ½" dia. anchor embedded 7" into wall at 48" o.c. max. with washer & nut. One anchor within 12" of each end & splices. Optional anchors shall be designed and sealed by a Kansas design professional.

Dimension and Reinforcing Requirement Table / Type 1.0

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>Reinforcing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandy/Silt P1<16</td>
<td>See note below</td>
<td>30" min.</td>
<td>6" min. above</td>
<td>4" min.</td>
<td>Ref detail #1 below</td>
</tr>
<tr>
<td>Sandy Clay/Clay P1 16 to 30</td>
<td>See note below</td>
<td>36" min.</td>
<td>4" min.</td>
<td>Ref detail #2 below</td>
<td></td>
</tr>
<tr>
<td>Lean/Fat Clay P1 31 to 45</td>
<td>See note below</td>
<td>42" min.</td>
<td>6" min.</td>
<td>Ref detail #3 below</td>
<td></td>
</tr>
</tbody>
</table>

Consult a Kansas design professional where P1 > 45.

Note on foundation widths: Level I loading = 8"; Level II loading = 12"; Level III loading = 16"; Add 4" to all min dimensions with addition of brick ledge. (Reference common note E2/Sh 0.3 for Load Level Definitions.)

Detail 1 / Type 1.0a

- Type 1.0 / Mono Pour in P1<16 soil

Detail 2 / Type 1.0b

- Type 1.0 / Mono Pour in P1 16 to 30 soil

Detail 3 / Type 1.0c

- Type 1.0 / Mono Pour in P1 31 to 45 soil

Wichita Foundation, Basement and Slab-on-grade Construction Standards / 30 Aug 2011 Page 1.0
FOUNDATION TYPE 2.0 DETAIL NOTES:

1a. Fndn Type 2.0 / Grade Beam (Trench) & Slab placement.

1b. 8" thickened edge slab.

2. For all note "2" dimension standards (a thru g), reference the table on this page.

3. Reference Soil & Backfill standards for these material types:
 - Soil 4a
 - Soil 4b
 - Soil 4c

4. Reference specifically these Common Notes for type 2 fndn:
 - A1 thru A3, B3, C1, C2, D2 thru D4, E1 thru E3, T1 thru T2.

5. Steel Reinforcing and anchoring standards:
 - a) #3 @ 4' horizontal continuous at PI<16, #4 @ 4' at PI 16+.
 - b) Slab reinforcement 6x6-w1.4 x w1.4 WWF (6x6 - 10x10 mesh), center in slab.
 - c) Anchor Bolts, see note 7.
 - d) Slab reinforcement: 6x6-w2.9 x w2.9 WWF in sheets (6x6 - 6x6 mesh), center in slab.
 - f) Slab reinforcement: #4 @ 24" o.c. each way, center in slab or approved post tensioning system.

6. All foundations must extend 12" min. into undisturbed soil free of vegetation or into engineered controlled fill materials. Foundations or grade beams may also be supported on concrete piers extending into deeper bearing material. These systems shall be designed and sealed by a Kansas design professional.

7. Min. 2x4 PL w/ 7/8" dia. anchor embedded 7" into wall at 48" o.c. max. with washer & nut. One anchor within 12" of each end & splices. Optional anchors shall be designed and sealed by a Kansas design professional.

Dimension and Reinforcing Requirement Table / Type 2.0

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>(2a)</th>
<th>(2b)</th>
<th>(2c)</th>
<th>(2d)</th>
<th>(2e)</th>
<th>(2f)</th>
<th>Reinforcing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandy/Silt P.<16</td>
<td>30"</td>
<td>6"</td>
<td>36"</td>
<td>4"</td>
<td>8"</td>
<td></td>
<td>Refer detail #1 below</td>
</tr>
<tr>
<td>Sandy Clay/Clay PI 16 to 30</td>
<td>36"</td>
<td>6"</td>
<td>42"</td>
<td>4"</td>
<td>8"</td>
<td></td>
<td>Refer detail #2 below</td>
</tr>
<tr>
<td>Lean/Fat Clay PI 31 to 45</td>
<td>42"</td>
<td>6"</td>
<td>48"</td>
<td>6"</td>
<td>8"</td>
<td></td>
<td>Refer detail #3 below</td>
</tr>
</tbody>
</table>

Consult a Kansas design professional where PI > 45.

Note on foundation widths: Level I loading = 8"; Level II loading = 12";
Level III loading = 16"; Add 4" to all min dimensions with addition of brick ledge. (Refer common note E2/Sht 0.3 for Load Level Definitions.)

Detail 1 / Type 2.0a

- One bar in slab
- 3.5" min.
- See item 2a in table

Detail 2 / Type 2.0b

- One bar in slab
- 3.5" min.
- See item 2a in table

Detail 3 / Type 2.0c

- One bar in slab
- 3.5" min.
- See item 2a in table

Type 2.0 / Grade Beam in PI<16 soil

Type 2.0 / Grade Beam in PI 16 to 30 soil

Type 2.0 / Grade Beam in PI 31 to 45 soil

Wichita Foundation, Basement and Slab-on-grade Construction Standards / 30 Aug 2011
Page 2.0
FOUNDATION TYPE 3.0 DETAIL NOTES:

1a. Fndn Type 3.0 / Footing 1b. Stemwall 1c. 8" thickened edge Slab.

For all note "2" designational standards (thru g), reference the table on this page:

Reference Soil & Backfill standards for these material types: Soil a, Soil b, Soil c, Soil d, Soil e.

Reference specifically these Common Notes for type 3 fndn:

A1, A2, A3, A4, B1, B2, B3, B4, C1, C2, C3, C4, D1, D2, D3, D4, E1, E2, E3, E4, F1, F2, F3, F4, T1, T2.

Steel Reinforcing and anchoring standards:

a) 3- #4 horizontal continuous at Pl<16, 4- #4 at Pl 16+. One bar in slab.

b) #4 vertical @ 30" o.c. max. centers, center in wall. (Hook 24" into slab)

c) Anchor Bolts, see note 7.

d) Slab reinforcement: 6x6-w1.4 x w1.4 WWF (6x6 - 10x10 mesh), center in slab.

e) Slab reinforcement: 6x6-w2.9 x w2.9 WWF in sheets (6x6 - 6x6 mesh), center in slab.

f) Slab reinforcement: #4 @ 24" o.c. each way, center in slab or approved post tensioning system.

g) #4 dowels @ 30" o.c. max. (dowels and verticals could be one piece) 6" leg at bottom.

h) 2-#4 cont. @ 1'-4" min. ftg. & 3-#4 cont. @18" min. ftg.

All foundations must extend 12" min. into undisturbed soil free of vegetation or into engineered controlled fill materials. Foundations or grade beams may also be supported on concrete piers extending into deeper bearing material. These systems must be designed and sealed by a Kansas design professional.

Min. 2x4 PL w/ ½" dia. anchor embedded 7" into wall at 48" o.c. max. with washer & nut. One anchoring within 12" of each end & splices. Optional anchors shall be designed and sealed by a Kansas design professional.

Consult a Kansas design professional where Pl > 45.

Level I & II loading: 1'-8" min. & 2'-0" min w/ Brick Ledge, at Level III loading: 2'-0" min & 2'-4" w/ Brick Ledge. (See Common Note E20.3 for Loading Level)

Wichita Foundation, Basement and Slab-on-grade Construction Standards / 30 Aug 2011
Page 3.0
FOUNTIONAL TYPE 3.1 DETAIL NOTES:
If no ledge pour to support slab see note R5 for doweling requirements.

1a. Fndn Type 3.1 / Footing
1b. Frost Wall
1c. Slab at garage

2. For all note "2" dimensional standard (a thru g), reference the table on this page.

3. Reference Soil & Backfill standards for these material types:
 - Soil a
 - Soil b
 - Soil c
 - Soil d

4. Reference specifically these Common Notes for type 3.1 fndn:
 - A1
 - A2
 - A3
 - B3
 - C1
 - C2
 - D2
 - D4
 - thru
 - R1
 - R5
 - T1
 - T2

5. Steel reinforcing and anchoring standards:
 a. #3 horizontal continuous at Pl<16, #4 #4 at Pl 16+.
 b. Vertical @ 30" o.c. max. centers, Center in upper wall. (Hook 24" into slab)
 c. Anchor Bolts see note 7
 d. Slab reinforcement: 6x6-w1.4 x w1.4 WWF (6x6 - 10x10 mesh), center in slab.
 e. Slab reinforcement: 6x6-w2.9 x w2.9 WWF in sheets (6x6 - 6x6 mesh), center in slab.
 f. Slab reinforcement: #4 @ 24" o.c. each way, center in slab or approved post tensioning system.
 g. #4 dowels @ 30" o.c. max. (dowels and verticals could be one piece)

6. All foundations must extend 12" min. into undisturbed soil free of vegetation or into engineered controlled fill materials. Foundations or grade beams may also be supported on concrete piers extending into deeper bearing material. These systems must be designed and sealed by a Kansas design professional.

7. Min. 2x4 PL w/ #" dia. anchor embedded 7" into wall at 48" o.c. max. with washer & nut. One anchor within 12" of each end & splices. Optional anchors shall be designed and sealed by a Kansas design professional.

Dimension and Reinfocing Requirement Table / Type 3.1

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>(2a)</th>
<th>(2b)</th>
<th>(2c)</th>
<th>(2d)</th>
<th>(2e)</th>
<th>(2f)</th>
<th>(2g)</th>
<th>Reinforcing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandy/Silt Pl<15</td>
<td>30"</td>
<td>6"</td>
<td>16"</td>
<td>4"</td>
<td>8"</td>
<td></td>
<td></td>
<td>Ref detail #1 below</td>
</tr>
<tr>
<td>Sandy Clay/ Clay Pl 15 to 35</td>
<td>See note below for min. widths</td>
<td>36"</td>
<td>6"</td>
<td>6"</td>
<td>4"</td>
<td>8"</td>
<td>8"</td>
<td>Ref detail #2 below</td>
</tr>
<tr>
<td>Lean/Fat Clay Pl>35</td>
<td>42"</td>
<td>6"</td>
<td>6"</td>
<td>6"</td>
<td>8"</td>
<td>8"</td>
<td>Ref detail #3 below</td>
<td></td>
</tr>
</tbody>
</table>

Consult a Kansas design professional where Pl > 45.

Level I & II loading: 1'-8" min. & 2'-0" min w/ Brick Ledge, at Level III loading: 2'-0" min & 2'-4" w/ Brick Ledge. (See Common Note E2/0.3 for Loading Level)

Detail 1 / Type 3.1a

- Ref 2c in table
- 5" min.
- 3" min. cover
- See Table Item 2a
- 6" leg
- 3.5" min.
- 10" leg

Detail 2 / Type 3.1b

- Ref 2c in table
- 5" min.
- 3" min. cover
- See Table Item 2a
- 6" leg
- 3.5" min.
- 10" leg

Detail 3 / Type 3.1c

- Ref 2c in table
- 5" min.
- 3" min. cover
- See Table Item 2a
- 6" leg
- 3.5" min.
BASEMENT WALL: Do not backfill any wall before 7 days when average air temperature is above 50 degrees and not before 10 days when average air temperature is below 50 degrees.

BASEMENT SLAB: See note 6.

For all note "2" dimensional standards (a thru e), reference the following table:

Min. treated 2x6 PL w/ 3/8" dia. x10" min. anchor bolts @ 32" o.c. max. or 3/8" dia. x10" min. anchor bolts @ 48" o.c. max. with washer & nuts. (Approved adhesive or mechanical anchors drilled in place are acceptable.) Anchor bolts to be placed at centerline of sill plate and embedded a minimum of 7" into concrete. A maximum of one plate may be added on top of the lower plate. Refer to detail A1 & A2 / 6.0.

Consult a Kansas design professional where PI > 45.
Crawl Space Foundation Type
Construction Standards

5.0 FndnType

FOUNDATION TYPE 5.0 DETAIL NOTES:

1a FOUNDATION FOOTING:

1b CRAWL SPACE STEM WALL: Do not backfill any wall before 7 days.

2 For all note "2" dimensional standards (a thru c), reference the following table:

Dimension and Reinforcing Requirement Table

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>(2a)</th>
<th>(2b)</th>
<th>(2c)</th>
<th>(2d)</th>
<th>(2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandy/Silt PI < 16</td>
<td>See note</td>
<td>10" min.</td>
<td>See Details</td>
<td>6" min.</td>
<td>8" min.</td>
</tr>
<tr>
<td>Sandy Clay/Clay PI 16 to 30</td>
<td>below for min. widths</td>
<td>10" min.</td>
<td>1 thru 3 below</td>
<td>6" min.</td>
<td>10" min.</td>
</tr>
<tr>
<td>Lean/Fat Clay PI 31 to 45</td>
<td>10" min.</td>
<td>6" min.</td>
<td>brick ledge)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Consult a Kansas design professional where PI > 45.

Level I & II loading: 1'-8" min. & 2'-0" min w/ Brick Ledge, at Level III loading: 2'-0" min & 2'-4" w/ Brick Ledge. (See Common Note E2/0.3 for Loading Level)

3 Reference Soil & Backfill standards for these material types.

4 Reference specifically these Common Notes for type 5 fndn:

A A B B A A C C C C A A B B B B 11 11

5 Steel Reinforcing and anchoring standards:
 a) 2- #4 horizontal continuous @ PI<16; 3-#4 horizontal continuous @ PI 16 and above.
 b) #4 vertical @ 30" o.c. max., center in wall (Hook 24" into slab)
 c) Anchor Bolts, see note 7.

6 All foundations must extend 12" min. into undisturbed soil free of vegetation or into engineered controlled fill materials. Foundations or grade beams may also be supported on concrete piers extending into deeper bearing material. These systems must be designed by an architect or engineer.

7 Min. treated 2x6 PL w/ 1/2" dia. x10" min. anchor bolts @ 32" o.c. max. or 1/2" dia. x10" min. anchor bolts @ 48" o.c. max. with washer & nuts. (Approved adhesive or mechanical anchors drilled in place are acceptable.) Anchor bolts to be placed at centerline of the sill plate and embedded a minimum of 7" into concrete. A maximum of one plate may be added on top of the lower plate.

Joists to plate attachment: 4-10d nails to plate if 2x4 flat, or 3-12d nails if solid vertical blocking or joists. Ref detail A1 & A2 / 6.0.

[Ref Det F5/6.2 for similar interior bearing footing design information.]

Wichita Foundation, Basement and Slab-on-grade Construction Standards / 30 Aug 2011 Page 5.0
Foundation Details

Construction Standards

6.0 FndnDet

At blocking & at joist bearing ends attach blocking and joists to plate as follows:
4-10d nails to plate if 2x4 flat, or 3-12d nails if solid vertical blocking or joists.

If brick ledge height exceeds 2'-8", walls must be 12" thick providing a 7" minimum interior wall. Center rebar in this 7" wall extension. Where walls retain less than 4' of soil, use detail sim. to type A4 / sht 6.0.

Solid vertical blocking at 48" max o.c. minimum 2 joist spacing. Then, solid or "X" bridging at 8ft. max o.c.

Stemwalls shall be limited to retaining 48" of exterior soil.
Over 48" requires a sealed design by a Kansas design professional.

Dashed line indicates condition perpendicular to floor joists.

1-1/2" to 2-1/2" clear from exterior face to rebar

2 - #4 cont. within 8" of top of wall
8" min.
(10" min. with brick ledge)

3 - #4 3" clear from bottom
5" min.

Slope wall from base to top of lower footing, 1/2" min.

At blocking & at joist bearing ends attach blocking and joists to plate as follows:
4-10d nails to plate if 2x4 flat, or 3-12d nails if solid vertical blocking or joists.

(If ducts are required in first and/or second joist space, nail 2x4 flat at 48" max o.c. to sill plate w/ 4-10d nails & joists, then 2 spaces of solid blocking at 48" o.c. before bridging at 8" max o.c.)

TYPICAL BASEMENT WALL FRAMING PARALLEL TOP OF WALL.

STEMWALLS AND FOUNDATION. Sim section F1/sh 6.2 or Foundation type 3.1, Garage Slab and Foundation.

1-1/2" clear (1" min., 2-1/2" max.)

BASEMENT FOOTING & FOUNDATION

SLOPE WALL FROM BASE TO TOP OF LOWER FOOTING, 1/2" MIN.

STEPPED FOUNDATIONS FROM BASEMENT TO CRAWL OR GARAGE.
3 OPTIONS FOR MEETING BASEMENT WALL INSULATION REQUIREMENTS:

A. EXTERIOR INSULATION OPTION:
1) Install approved XPS or EPS insulation on exterior of foundation, full height, to R-10 min. Insure that exposed insulation at top of wall is protected against damage from abuse and exposure.

B. INTERIOR INSULATION OPTIONS:
1) Apply continuous insulation, full height, with EPS or XPS sheet material to R-10 min.
2) Construct interior stud walls, full height and insulate walls to R-13 min.

Reference table "A", Sheet 0.3, Foundation Insulation Standards, for details on insulation of basement and slab-on-grade projects.

SECONDARY USE ONLY. THIS SYSTEM DOES NOT REPLACE INTERIOR SUMP REQUIREMENT.
Alternative Foundation Details

Construction Standards

DET F1 GARAGE SLAB & FOUNDATION ALTERNATIVE DETAIL

Reference foundation 3.1, garage slab and foundation detail for reinforcing and dimensioning requirements.

DET F2 PIT or LIGHTWELL BASEMENT WALL SUPPLEMENTAL DETAIL

Similar to basement wall 4.0 detail for reinforcing and dimensioning requirements.

DET F3 FULL ELEVATION FROST-WALL FLOATING INTERIOR SLAB ALTERNATIVE BASEMENT WALK-OUT DETAIL

Similar to foundation 3.1 stemwall and foundation detail for reinforcing and dimensioning requirements.

DET F4 WALK-OUT BASEMENT @ EXTERIOR PATIO TRADITIONAL SLAB EDGE

Similar to foundation 3.0a stemwall and foundation detail for reinforcing and dimensioning requirements.

Notes and Key

- General
- Common
- Detail

Revision Information

Wichita Foundation, Basement and Slab-on-grade Construction Standards / 30 Aug 2011 Page 6.2
Maintaining positive surface drainage away from the foundation edge by adding non-granular (cohesive) soil over settling backfill material will help move water away from the building's perimeter.

When perimeter soil drainage is not maintained, increased water penetration at foundation promotes soil expansion, greatly increasing damage potential.

Slabs will heave and foundation edges will separate as a result of soil expansion pressure causing not only physical but structural damage.

When soils below the slab move, below slab water and waste pipes can rupture, further accentuating damaging conditions.

CAUTION: Pouring slabs on top of soils with LOW (DRY) MOISTURE CONTENT will promote conditions favorable to "HEAVING". As moisture is drawn INTO soil below the slab, it EXPANDS, increasing pressure promotes slab failure. Higher PI soils accentuate this tendency.

SITE

S1 "DOMING" TENDENCY WITH INCREASE PRESSURE

Soil Type "b" provides a buffer for normal seasonal variations in soil moisture content. Extremes in weather, flaws in drainage planning and maintenance, abnormal or existing ground water conditions will accentuate clayey soil movement resulting in damage to slabs and foundation. Where extreme soil or moisture conditions exist or are anticipated it is recommended that a soils engineer be consulted and aggressive subsurface material conditioning be implemented.

Deeper foundations in higher PI soils (Soil "a") provide greater protection against thermal and moisture damage, some of these benefits include:

1. Moisture retaining soils (High PI) allow frost (freezing) to penetrate deeper below grade, deeper foundations are required to stay below frost depth; and
2. Moisture variations create swelling and shrinking of clay type soils. The deeper the foundation, the less impact surface water has on soils below the slab.

SITE

S2 "CUPPING" TENDENCY WITH DECREASED PRESSURE

Thermal and Moisture impact is greatest at surface and decreases with depth.

Deeper soils on exterior will experience moisture from below slab, shrinking interior material and bearing capacity.

SITE

S3 "CUPPING" TENDENCY WITH DECREASED PRESSURE

Drying causes shrinkage of clayey soil materials.

SITE

S2 EXISTING SITE PREPARATION

TENDENCIES OF SOIL MATERIALS WITH CHANGING ENVIRONMENTAL CONDITIONS

Reinforcing material is not effective if not located properly in slab.

SITE

S3 DECREASING BELOW GRADE MOISTURE

CAUTION: Pouring new slabs on top of soils with HIGH (WET) MOISTURE CONTENT will create conditions favorable to "CUPPING". As moisture is wicked out from below the slab, soils SHRINK, decreasing bearing capacity. Higher PI soils accentuate this tendency.

IMPORTANT NOTE: Foundations depend on even soil bearing in undisturbed soil, consistent in type and free from vegetation, to distribute loading properly. Foundations must be stepped to follow existing site grading conditions, supported on piers or rest in properly tested and compacted fill material. Failure to follow this accepted practice will promote differential settlement over time and is likely to result in foundation, subsequent structural framing and finishing material damages.