

HVAC REPLACEMENT JUVENILE HOUSING FACILITY

881 Minnesota Street Wichita, Kansas

BID NUMBER # 21-0036

HANNEY & ASSOCIATES ARCHITECTS

■ 1726 South Hillside ■ Wichita, Kansas 67211 ■ (316) 683-8965 phone ■

INDEX TO SPECIFICATIONS

Sedgwick County Juvenile Residential Facility HVAC Replacement

DIVISION 1 – GENERAL REQUIREMENTS	
Section 00300 Special Conditions	page
DIVISION 21 – FIRE SUPPRESSION	
Section 210500 Common Work Results for Fire Suppression	pages
Section 211313 Wet-Pipe Sprinkler Systems	
DIVISION 23 – HEATING VENTILATING AND AIR CONDITIONING	
Section 230000 General Mechanical Requirements	pages
	pages
Section 230529 Hangers and Supports for HVAC Piping and Equipment	pages
Section 230553 Identification for HVAC Piping and Equipment	pages
Section 230593 Testing, Adjusting & Balancing for HVAC	
Section 230713 Duct Insulation	
Section 230719 HVAC Piping Insulation	
Section 231123 Facility Natural-Gas Piping	
Section 232113 Hydronic Piping	pages
Section 232300 Refrigerant Piping	pages
Section 233113 Metal Ducts	
Section 233000 Air Duct Accessories	
Section 233423 HVAC Power Ventilators	
Section 233713 Diffusers, Registers and Grilles	
Section 233723 HVAC Gravity Ventilators	
Section 235400 Furnaces	
Section 236313 Air-Cooled Refrigerant Condensers	
Section 238126 Split System Air Conditioners	
Section 238239 Unit Heaters	pages
DIVISION 26 – ELECTRICAL	
Section 260000 Basic Electrical Requirements	pages
Section 260519 Low-Voltage Electrical Power Conductors and Cables	pages
Section 260526 Grounding and Bonding for Electrical Systems	pages
Section 260529 Hangers and Supports for Electrical Systems	
Section 260533 Raceways and Boxes for Electrical Systems	
Section 260553 Identification for Electrical Systems	
Section 262200 Low-Voltage Transformers	pages
Section 262416 Panelboards	pages
Section 262726 Wiring Devices	
Section 262813 Fuses	pages
Section 262816 Enclosed Switches and Circuit Breakers	pages

SECTION 00300

SPECIAL CONDITIONS

1. A.I.A. GENERAL CONDITIONS

A.I.A. Document A201 "General Conditions of the Contract for Construction", 1997 Edition, hereinafter referred to as the "A.I.A. General Conditions", is hereby made a part of this Specification, as if hereto attached or herein repeated. Contractor shall consult this document and become intimately familiar with its contents before submitting his proposal. Copies are available for purchase from the American Institute of Architects, 1735 New York Avenue, N.W., Washington D.C. and from local A.I.A. offices.

2. WORK INCLUDED

These Specifications and the accompanying Drawings are intended to provide for all materials and labor necessary for the HVAC Replacement at the Sedgwick County Juvenile Residential Facility, Wichita, Kansas.

3. INTERPRETATION OF DOCUMENTS

If any person contemplating submitting a bid for the proposed Contract is in doubt to the meaning of any part of the Plans, Specifications, or other proposed Contract Documents, he may submit to the Architect a written request for an interpretation thereof, prior to 48 hours of the hour of opening bids. The person submitting the request will be responsible for its prompt delivery. Any interpretation of the proposed documents will be made only by Addendum duly issued and a copy of such Addendum will be mailed, faxed or delivered to each person receiving a set of such documents.

4. VERIFICATION OF DOCUMENTS

Before submitting his proposal, each bidder shall check his set of Specifications and Drawings and advise the Architect if any sheets are missing.

- 4.1.1 Enumeration of Specifications appears in the Specifications Index.
- 4.1.2 Enumeration of Drawings appears on Sheet Number One (1) of the Plans.

5. CONTRACT DOCUMENTS

The Contract Documents consist of: The Agreement, the conditions of the Contract (General Conditions, Revisions in General Conditions and Supplementary General Conditions), the Drawings, the Specifications, all Addenda issued prior to the execution of the Agreement, and Change Orders thereafter.

6. PROPOSALS

Bidders are required to use the Proposal Form furnished by the Architect, which shall be made part of the Contract Documents.

7. EXAMINATION OF PREMISES

The Contractor shall carefully examine the premises before submitting his bid. No allowance will be made for lack of full knowledge of all conditions, except underground conditions as are indeterminable before the commencement of the work.

8. THE COMPLETE SET OF PLANS AND SPECIFICATIONS ARE BEING ISSUED FOR BIDS. AS SUCH, EACH BIDDER IS REQUIRED TO REVIEW THE ENTIRE SET OF DOCUMENTS FOR WORK THAT MAY BE REQUIRED/DESCRIBED OUTSIDE THE EXPECTED AREA.

9. CHANGES

It is understood that the Owner shall have the right during the progress of construction to make any alterations, additions, or omissions that he may desire, to work or material herein specified or shown on the Drawings. The same shall be carried into effect by the Contractor without in any way violating the Contract, but if such changes are made, the value of same must be agreed upon in writing between Owner, Architect, and Contractor. No omissions will be allowed, or extra work paid for unless ordered in writing by the Architect.

10. SPECIAL WORK NOT INCLUDED

The Owner reserves the right to have special work, not included in the Contract, done during the course of the work herein included.

11. PERMITS

The County shall obtain and pay for all permits, surveys, and inspector's fees required without cost to the Owner. (**Sedgwick County**)

12. RESPONSIBILITY FOR ACCIDENTS

The Contractor must bear all loss of damage from accident which may occur to any person or persons, by or on account of the execution of the work, until possession is taken by the Owner. The Contractor must provide all legal and necessary guard railing, lights, warning signs, etc., during the progress of the work.

13. INSURANCE

The Contractor shall purchase and maintain coverages required by the General Conditions of the Contract, Paragraph 11.1 and these Specifications in the following minimum amounts, and provide the Owner, through the Architect, three copies of a Certificate of Insurance on A.I.A. form G705.

14. PROJECT SIGN

Provide and erect a project sign of a size approximately 8'-0" wide x 4'-0" high in accordance with detail as provided by the Architect. Sign shall be painted in three (3) colors on a white and black background on 3/4" plastic faced marine plywood. The sign shall contain name of the project, name of the Architect, Engineers and names of the prime Contractors.

15. DETAIL AND WORKING DRAWINGS

Additional detail and working drawings will be furnished in amplification of the Contract Drawings as they may be required; all such additional drawings are to be considered of equal force with those which accompany these specifications. A complete set of the drawings and specifications must be kept in the building at all times during the progress of the work.

16. **DIMENSIONS**

Figures given on the Drawings govern scale measurements and larger scale govern smaller.

17. FOREMAN

The Contractor must have at the building from start to finish one responsible foreman throughout the entire job; in addition, the Contractor must give the work his personal supervision; the foreman must be on duty during all working hours. Any instructions for notices given to him shall have the same force as if given to the Contractor in person.

18. MATERIALS AND WORKMANSHIP

All materials and workmanship are to be the best of their several kinds, unless specified to the contrary. The Contractor is to furnish all accessories needed, such as scaffolding, forms, protection and all other temporary work, unless otherwise specified distinctly.

Special Conditions Page 2 of 7 Section 00300

19. DEFECTIVE OR IMPROPER WORK

Any work or materials not conforming to the specifications must be removed by the Contractor and replaced by approved materials or work without extra compensation. All condemned material must be removed from the premises immediately.

20. PROTECTION

All materials in or designed for the work shall be at all times suitably housed or protected, particular care being taken of all finished parts.

21. PRIVY

The General Contractor is to provide a temporary privy.

22. TEMPORARY OFFICES AND STORAGE

22.1.1 The General Contractor shall erect or provide a temporary office building for the joint use of the Contractor, his superintendent, Owner, and the Architect.

This building shall be weatherproof, provided with wood or equal floor, provided with ample light and equipped with tables to facilitate inspection of plans. This building shall be located on the site and shall be retained throughout the construction and shall be removed upon completion of the work.

- **22.1.2** Each Subcontractor shall make his own arrangements with the General Contractor for office and storage facilities on the Site. If necessary, each Subcontractor shall provide and maintain his own offices and storage facilities at the site.
- **22.1.3** The location of any temporary facilities and the extent of the facilities and services to be provided shall be subject to the requirements of the General Contractor. Locate temporary structures to avoid interference with the Work. Relocate temporary structures as required by the progress of the Work.

23. DISRUPTION OF SERVICES

Before digging or trenching commences, each Contractor shall verify with Public Service Companies all known plumbing, gas and underground electrical lines.

24. CLOSING-IN WORK

- 24.1.1 The General Contractor shall notify the Owner, all Contractors and subcontractors under the Owner, when he is ready for them to install their portions of their work and see that they comply with any reasonable period of time. Neither enclose nor cover any piping, wiring, ducts, equipment or other items until proper tests, observations, and/or inspections have been made by the Architect and/or proper authorities.
- 24.1.2 Notify the Architect to observe any work when placing of subsequent work would prevent observation of previous work.

25. FINISHING

- 25.1.1 Adjust windows, doors, drawers, hardware, appliances, motors, valves, controls and other equipment for proper operations.
- 25.1.2 Seal exterior joints between materials to form a waterproof enclosure.

- 25.1.3 Touch-up imperfections in surfaces, paint and other finishes after all Contractors and Tradesmen have completed their work.
- 25.1.4 Clean surfaces using appropriate materials and methods that will thoroughly clean but not damage materials and their finishes, nor damage or adversely affect other materials in the project.

26. COMPLETED WORK

- 26.1.1 Completed work shall find materials structurally sound, free from scratches, abrasions, distortions, chips, breaks, blisters, holes, splits or other disfigurement considered as imperfections for the specific material. Equipment shall operate properly to design performance capacities and requirements.
- 26.1.2 Finished installations shall illustrate first class workmanship.
- 26.1.3 Completed surfaces shall be thoroughly clean and free form foreign materials and stains.

27. PERMANENT SYSTEMS

Install, connect, service and operate permanent systems at earliest practical dates, except as may be modified by special conditions of these specifications.

28. COLOR SCHEDULE

A color schedule has been included with the Room Finish Schedule, on the Plans for bidding purposes. The Contractor and his subcontractors and material suppliers shall cooperate in furnishing required color samples to aid in the final selections. Where special colors are selected by the Architect, furnish accurate reproductions of these colors, on actual material to be furnished to the Project, for review.

29. GUARANTEE

The Contractor shall be responsible for and shall make good any defects due to faults in labor and materials, which may arise or be discovered within one (1) year after the completion of the work and its acceptance by the Architect.

30. RETURNING DRAWINGS & SPECIFICATIONS

All drawings and Specifications must be returned to the Architect before the final certificate will be issued to the Contractor.

31. WRITTEN WORDS IN PROPOSAL

In case of a difference between words and figures in a proposal, the amount stated in written words shall govern.

32. TRASH AND DEBRIS

Each Contractor shall be responsible to remove all loose paper, cardboard, etc. from the site in a consistent manner to avoid blowing of trash and debris. The General Contractor shall be responsible for maintaining a central trash receptacle that can be used by all contractors.

33. TEMPORARY LIGHTING & POWER

The General Contractor is responsible for making application and paying for electrical service for construction of this project until the Owner takes possession at substantial completion. It shall be the electrical contractor's responsibility to provide power and lighting at the site for all trades during construction.

34. TEMPORARY ROADS AND PAVED AREAS

- 34.1.1 Construct and maintain temporary roads and paved areas adequate to support loads and to withstand exposure to traffic during construction period. Locate temporary roads and paved areas in same location as permanent roads and paved areas. Extend temporary roads and paved areas, within construction limits indicated, as necessary for construction operations.
- 34.1.2 Coordinate elevations of temporary roads and paved areas with permanent roads and paved areas.
- 34.1.3 Recondition base after temporary use, including removing contaminated material, regrading, proof rolling, compacting, and testing. This applies to any area that will not be paved.
- 34.1.4 Delay installation of final course of permanent hot-mix asphalt pavement until immediately before substantial completion. Repair hot-mix asphalt base-course pavement before installation of final course according to Division 2- Section "Hot-Mix Asphalt Paving".

35. TEMPORARY HEATING AND COOLING

- 35.1.1 New equipment can be utilized providing the warranty on the equipment does not start until substantial completion is reached for the building.
- 35.1.2 Provide temporary heating and cooling required by construction activities for curing or drying of completed installations or for protecting installed construction from adverse effects of low temperatures or high humidity.

36. TEMPORARY WATER & SEWER

The General Contractor is responsible for all costs of water to bring water to the site during construction for use by all trades, until the Owner takes possession of the fire station until substantial completion.

37. SALES TAX EXEMPTION

- 37.1.1 Materials and equipment incorporated into this project are exempt from payment of Kansas Sales Tax and such Sales Tax shall be excluded from bidder's proposal.
- 37.1.2 The Owner will provide the Contractor with a proper exemption certificate number within ten (10) days of Contract date. Upon issuance of a proper exemption certificate number to the Contractor, the Contractor shall assume full responsibility for his own proper use of the certificate number and shall pay all costs of any legally assessed penalties relating to the Contractor's improper use of the exemption certificate number.
- 37.1.3 Should the Owner fail to provide a proper exemption certificate number, the amount of the Sales Tax for the project shall be allowed as an extra to the Contract amount.

38. TAXES

The Contractor shall make all necessary forms for and shall pay for all taxes on labor and materials, such as Sales Tax, Social Security Tax, Withholding Tax, etc., without additional cost to the Owner, where such taxes are required by the State and Federal Laws.

39. OMISSIONS

39.1.1 The Drawings and Specifications are intended to cooperate anything shown on the Drawings but not mentioned in the Specifications or vice versa, or anything not expressly set forth in either, but which is reasonable implied, shall be furnished as though specifically shown and mentioned in both, without any charge.

39.1.2 Should anything be omitted from the Drawings, necessary to the proper construction of the work herein described, it shall be the duty of the Contractor to so notify the Architect before signing the Contract and in the event of the Contractor failing to give such notice, he shall make good any damages of defects in his work caused thereby without extra charge.

40. PROTECTION OF WORK AND PROPERTY

The General Contractor shall take charge of and assume general responsibility for proper protection of the building during construction. He shall further provide substantial enclosures at all openings as necessary for protection, including doors and locks. Each Contractor shall assume responsibility for his materials stored on the premises.

41. EQUAL EMPLOYMENT OPPORTUNITY

Sections 1 through 5 of K.S.A. 44-1030 (as follows) shall be included in this Contract except those sub-contractors, vendors or suppliers whose cumulative dollar total in any fiscal year is \$5,000 or less, or who have fewer than four (4) employees:

- 41.1.1 The contractor shall observe the provisions of the Kansas Act against discrimination and shall not discriminate against any person in the performance of work under the present Contract because of race, religion, color, sex, physical handicap unrelated to such person's ability to engage in the particular work, national origin or ancestry;
- 41.1.2 In all solicitations or advertisements for employees, the contractor shall include the phrase, "equal opportunity employer," or a similar phrase to be approved by the commission;
- 41.1.3 If the contractor fails to comply with the manner in which the contractor reports to the commission in accordance with the provisions of K.S.A. 1976 Supp. 44-1030, as amended, he shall be deemed to have breached the present Contract and it may be cancelled, terminated or suspended, in whole or in part, by the contracting agency;
- 41.1.4 If the contractor is found guilty of a violation of the Kansas Act against discrimination under a decision or order of the commission which has become final, the contractor shall be deemed to have breached the present Contract and it may be cancelled, terminated or suspended, in whole or in part, by the contracting agency;
- 41.1.5 The contractor shall include the provisions of Paragraphs (1) through (4) inclusively of this Subsection (a) in every subcontract or purchase order so that such provisions will be binding upon such subcontractor or vendor.

42. EQUIPMENT VERIFICATION

- 42.1.1 Contractor check physical sizes of all material and equipment furnished under this Contract and require other Contractors and Owner to verify sizes of their equipment, in time to allow ample room for transporting equipment to and installing in its final location before enclosing spaces for it. Notify Architect in writing of any openings, ceiling heights or enclosures that are insufficient to accommodate equipment; such notice in ample time for Architect to direct necessary adjustments before such openings, ceilings or enclosures are placed.
- 42.1.2 Before construction proceeds to point that would prevent necessary modifications, Contractor check Drawings, Specifications, Shop Drawings and Change Orders and notify Architect, in writing, of any Mechanical/Electrical services and/or connections required but not indicated, or incorrectly indicated, for equipment furnished. Failing to do so, Contractor furnishing equipment provide required services and/or connections at his expense.

43. REPAIRS

Unless the Architect grants permission to repair any defective work, remove defective work from project and replace with new work in accordance with Contract Documents, permission to repair such work shall not constitute a waiver of Architect's right to require complete replacement of defective work if repair operation does not restore quality and appearance of member or surface to Architect's satisfaction. If permission is granted, repair according to Architect's direction.

44. CONSTRUCTION REPORT

The Contractor shall submit to the Owner through the Architect schedules of costs and quantities of materials and of other items; schedules shall be in such form and shall be supported as to correctness by the estimates upon which they are based as the Owner may require. The Contractor shall also submit to the Owner the following records on forms to be supplied by the Owner.

- 44.1.1 Detailed estimates.
- 44.1.2 Periodical estimates for partial payment.
- 44.1.3 Construction Schedule Dates with critical path chart.

45. LAWS AND ORDINANCES

The Contractor is required to familiarize himself with and observe all laws, ordinances and regulations relating to the work, and such laws, ordinances and regulations are hereby incorporated in and made a part of these specifications and the Contract for this work.

All work shall comply with the Americans with Disabilities Act.

46. COMMENCE WORK

Work may commence with Owner's approval.

47. Company's approved equals to the original specified suppliers are required to meet all requirements of the plans, specifications, and standards of performance and construction as established by the first named originally specified manufacturers product.

48. CLAIMS FOR ADDITIONAL TIME DUE TO ADVERSE WEATHER CONDITIONS

- 48.1.1 Bad weather day means a day that a contractor is unable to proceed with the stage or stages of the Work that is scheduled for that day due to weather conditions.
- 48.1.2 If adverse weather conditions are the basis for a claim for additional time, such claim shall be documented by data substantiating that weather conditions were abnormal for a period of time, could not have been reasonably anticipated and had an adverse effect on the scheduled construction.
- 48.1.3 The average number of bad weather days reasonably anticipated for each month are as follows: January (10), February (5), March (4), April (5), May (8), June (8), July (6), August (5), September (6), October (5), November (3), December (8).
- 48.1.4 The contractor will provide the Architect with a monthly bad weather day report within 5 days of the end of a month. If the contractor fails to report bad weather days 5 days from the end of the month, then it will be assumed that there were no bad weather days for the month.

End of Section 00300

SECTION 210500

COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following (section applies to clean agent suppression systems):
 - 1. General requirements for all Division 21 sections.
 - 2. Piping materials and installation instructions common to most piping systems.
 - 3. Transition fittings.
 - 4. Dielectric fittings.
 - 5. Mechanical sleeve seals.
 - 6. Sleeves.
 - 7. Escutcheons.
 - 8. Grout.
 - 9. Miscellaneous electrical equipment.
 - 10. Identification.
 - 11. Equipment installation requirements common to equipment sections.
 - 12. Painting and finishing.
 - 13. Supports and anchorages.

1.2 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specifications, apply to this Section.
- B. All electrical work installed under Division 21 shall be in compliance with Division 26.

1.3 DRAWINGS AND SPECIFICATIONS

- A. The drawings are diagrammatic in character indicating design concept and do not indicate every required duct or piping offset, valve, fitting, etc.
- B. All drawings relating to this structure, together with these specifications, shall be considered in bidding and construction. The drawings and specifications are complementary, and what is called for in either of these shall be as binding as though called for by both. Should any conflict or omissions arise between the drawings and specifications, such conflict shall be brought to the attention of the Architect/Engineer for resolution.
- C. Unless otherwise indicated, all equipment and performance data listed is for job site conditions (elevation 1,300 feet).
- D. Drawings are not to be scaled.

1.4 **DEFINITIONS**

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

- C. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.
- D. The following are industry abbreviations for rubber materials:
 - 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 - 2. NBR: Acrylonitrile-butadiene rubber.

1.5 SEISMIC/BLAST CRITERIA

- A. All system components must comply with the seismic/blast requirements of Division 21 Section "Seismic and Blast Controls for Fire Suppression Work." These include requirements for anchorage, internal, and attached/imbedded components. Included are the minimum 2006 International Building Code requirements plus additional criteria for this project. Systems requiring systems and components to be designated with a Component Importance Factor of 1.5 and requiring certification are tabulated in Division 21 Section "Seismic and Blast Controls for Fire Suppression Work."
- B. All life safety fire suppression systems in all Occupancy Categories and all other fire suppression systems protecting Building Occupancy Categories III and IV operations, systems, and/or structures shall be Designated Seismic Systems, Component Importance Factor 1.5.
- C. Seismic/Blast Performance: All life safety fire suppression systems and all other fire suppression systems designated with a component importance factor of 1.5, including all components and accessories, shall withstand the effects of earthquake motions.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to seismic/blast forces specified and the unit will be fully operational after the seismic/blast event."

1.6 SUBMITTALS

- A. Division 21 Submittal Data and Shop Drawings:
 - 1. Refer to Division 1, for general submittal requirements.
 - 2. Contractor agrees that shop drawings and/or submittals processed by the Engineer are not change orders; that the purpose of shop drawings and/or submittals by the Contractor is to inform the Engineer which equipment and materials he intends to furnish and install.
 - 3. Submittals and/or shop drawings are to be edited to show specific data and all options for the mechanical equipment that the Contractor intends to provide.
 - 4. Submittals and/or shop drawings are to be identified with numbers or letters identical to those listed on the drawings and/or specifications.
 - 5. All shop drawings for special systems (temperature controls, fire suppression, etc.) that will become permanent record documents shall be prepared on AutoCAD Version 2007 or later, using the same drawing size as the project construction documents.
 - 6. Approved Manufacturers and Substitutions
 - a. Equipment and/or materials manufactured by any one of the Engineer-approved manufacturers listed in this specification or on the drawings shall be acceptable if the equipment and material is equivalent in performance, capacity, and configuration.
 - b. Substitution Requests prior to bid: Refer to Division 1. No prior approvals will be given by the Engineer unless specifically mentioned in these specifications.
 - c. Substitution Requests after Execution of Contract: If Contractor wishes to furnish or use a substitute item of material and/or equipment; he must submit a change order request to the Engineer. The request for change order shall itemize each of the proposed substitutions

identified by applicable specification section, paragraph number, and/or drawing number. A price change (increase or decrease) shall be listed for each item along with complete data showing performance over entire range, physical dimensions, electrical characteristics, material construction, operating weight, and other applicable data. Justification of substitution must be more than just cost justification. The Engineer will review the change order request for equality, suitability, and reasonableness of price differential. A single substitution change order listing the approved items will be issued with the net cost of the change order being the sum of the approved item costs. No subsequent substitution change orders will be considered. The Engineer's decision will be final.

- d. It shall be the responsibility of the Contractor to assure that the substitute material and/or equipment fits into the space provided and the Contractor shall pay for all extra costs incurred by other trades for any and all changes necessitate by these substitutions. No time extension will be allowed due to substitution on equipment.
- e. Equipment and/or materials manufactured by any one of the Engineer-approved manufacturers listed in this specification or on the drawings shall be acceptable if the equipment and material is equivalent in performance, capacity, and configuration.

7. Submittals Schedule:

- a. Comply with Division 1 construction progress documentation and submittal requirements and the additional submittal requirements specified below. Unless otherwise specified in Division 1, comply with the submittal periods specified below. Engineer will schedule submittal reviews based upon submittal schedule. Failure to submit schedule may result in inability to review submittals within the periods stated in the submittal schedule. These delays shall not be cause for extension of Contact completion date.
 - 1) Processing Time: Allow enough time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Architect's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.
 - 2) Submit schedule within 14 days of commencement of work. Allow 15 days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Architect will advise Contractor when a submittal being processed must be delayed for coordination.
 - 3) Allow 15 days for review of each resubmittal.
- b. Submit a minimum of three copies of schedule. Arrange the following information in a tabular format:
 - 1) Scheduled date for first submittal.
 - 2) Specification Section number and title.
 - 3) Submittal category (action or informational).
 - 4) Name of subcontractor.
 - 5) Description of the Work covered.
 - 6) Scheduled date for Architect's final release of reviewed submittal.
- 8. Schedule of Deviations: Equipment and material submittals of approved manufacturers, including basis of design manufacture shall provide a written itemization of exceptions to the specification and deviations from the basis of design for all features, design, configuration, physical dimension, performance, and operation of the submitted product. Those elements not identified and itemized

as exceptions in the submittal shall not be reviewed by the Engineer and shall be provided as specified.

- B. Manufacturer Seismic Qualification Certification: Submit certification that equipment, mounted and separately mounted accessories and components meet the criteria specified in Division 21 Section "Seismic Controls for Fire Suppression Work" and will withstand the effects of earthquake motions determined according to ASCE 7 and remain operational.
 - 1. Basis for Certification: State whether certification is based upon an actual test on a shake table, by three-dimensional shock tests, by an analytical method using dynamic characteristics and forces, by the use of experience data (i.e., historical data demonstrating acceptable seismic/blast performance) or by a more rigorous analysis providing for equivalent safety.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Closeout Submittals:

- 1. Operating and Maintenance (O&M) Manual:
 - a. Provide O&M manuals in accordance with Division 1.
 - b. The Contractor shall prepare an operating and maintenance manual that shall cover all systems and equipment installed under this Division. Incorporate the standard technical literature into system-specific formats for this facility as designed and actually installed. The resulting manual shall also serve as the training manual and shall be specific, concise, to the point, and tailored specifically for this facility.
 - c. Unless specified otherwise in Division 1, the maintenance manual shall be submitted to the Engineer in draft form for approval prior to preparation of two copies for final submission to the Architect for delivery to the Owner.
 - d. The maintenance manual shall be 8-1/2" x 11" size and assembled in loose-leaf three-ring or post binder. Provide manufacturers' original literature. Facsimiles are not acceptable. The manual shall be adequately indexed and contain the following information:
 - 1) Contractors' names, addresses, and telephone numbers.
 - 2) Alphabetical list of all system components with the name and address and 24-hour phone number of the company responsible for servicing each item during the first year of operation.
 - 3) Guarantees and warranties of all equipment whenever applicable.
 - 4) All manufacturers' data that is applicable to the installed equipment, with appropriate highlighting, such as the following:
 - a) Shop drawings (latest copy).
 - b) Installation instructions.
 - c) Lubrication instructions.
 - d) Wiring diagrams.
 - 5) A simplified description of the operation of all systems including the function of each piece of equipment within each system, including both normal and emergency operation. These descriptions shall be supported with a schematic flow diagram when applicable.
- 2. Record Drawings:

- a. Comply with Record drawing requirements in Division 1.
- b. Record Prints: All RFIs, change orders, and other directives, if not recorded on the contract drawings and amendments, shall be red-lined on the record drawings. Record drawings only tabulating amendments onto the drawings shall be returned for clarification of installed conditions and red-line mark-up.
- D. Non-Responsive Submittals: Submittals are intended to be reviewed in an initial submittal with comments corrected and submitted in a resubmittal. Non-responsiveness to the initial submittal comments in the resubmittal will result in return of the documents for correction and additional resubmittals. Any time charged by the Engineer in review of additional resubmittals due to non-responsiveness shall be deducted from the Contractor's billings.

E. Product Data:

- 1. Transition fittings.
- 2. Dielectric fittings.
- 3. Mechanical sleeve seals.
- 4. Escutcheons.

F. Certificates:

- 1. Welding certificates.
- 2. Certificates of Compliance for Seismic Requirements of Designated Seismic Systems.

G. Schedules:

- 1. Equipment Label Schedule: Include a listing of all fire suppression equipment to be labeled with the proposed content for each label.
- 2. Valve numbering scheme.
- 3. Valve Schedules: For fire suppression piping system to include in O&M manuals.

1.7 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code—Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristic for Fire-Suppression Equipment: Equipment of lower or higher electrical characteristics may be furnished provided such proposed equipment variations are specifically identified as a deviation from contract documents and approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified at no cost to the Owner. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes away from direct sunlight. Support piping to prevent sagging.

1.9 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for fire-suppression installations.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for fire-suppression items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 8.

D. Identification:

- 1. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- 2. Coordinate installation of identifying devices with locations of access panels and doors.
- 3. Install identifying devices before installing acoustical ceilings and similar concealment.
- E. Coordinate with all trades to maintain clearances to access panels, equipment, control and electrical panels. Intrusions into access space shall be brought to the attention of other trades. Notify the Engineer of conflicts shown on drawings prior to installation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 21 piping Sections for pipe, tube, and fitting materials and join methods.
 - 1. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 **JOINING MATERIALS**

- A. Refer to individual Division 21 fire suppression piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- D. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 TRANSITION FITTINGS

A. AWWA Transition Couplings: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.

- 1. Available Manufacturers:
 - a. Cascade Waterworks MFG. Co.
 - b. Dresser Industries, Inc. DMD Div.
 - c. Ford Meter Box Company, Incorporated (The); Pipe Products Div.
 - d. JCM Industries.
 - e. Smith-Blair, Inc.
 - f. Viking Johnson.
- 2. Underground Piping NPS 1-1/2 and Smaller: Manufactured fitting or coupling.
- 3. Underground Piping NPS 2 and Larger: AWWA C219, metal sleeve-type coupling.
- 4. Aboveground Pressure Piping: Pipe fitting.

2.5 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 - 1. Manufacturers:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Metraflex Co.
 - d. Pipeine Seal and Insulator, Inc.
 - e. PSI/Thunderline/Link-Seal.
 - 2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 3. Pressure Plates: Zinc dichloromate or glass reinforced plastic. Include two for each sealing element.
 - 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.6 SLEEVE

- A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

2.7 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
 - 1. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish
 - 2. Split-Casting, Cast-Brass Type: With concealed hinge and set screw. Finish: Polished chrome plated.
 - 3. One-Piece, Floor-Plate Type: Cast-iron floor plate.
 - 4. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

- 5. Split-Casting, Cast-Brass Type: With concealed hinge and set screw. Finish: Polished chrome plated.
- 6. One-Piece, Floor-Plate Type: Cast-iron floor plate.
- 7. Split-Casting, Floor Plate Type: Cast brass with concealed hinge and set screw.

2.8 GROUT

- A. Description: ASTM C1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000 psig, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

2.9 MISCELLANEOUS ELECTRICAL DEVICES

- A. Furnish all necessary control devices such as speed controls, transformers, and relays as required for proper operation of all equipment furnished under this Division.
- B. Furnish all remote switches and/or pushbutton stations required for manually operated equipment complete with low energy pilot lights of an approved type.
- C. Enclosures: NEMA Type 1, general purpose enclosures with padlock ears, except in wet locations shall be NEMA Type 4 with conduit hubs, or units in hazardous locations that shall have NEC proper class and division explosion-proof enclosure. Enclosure outside the building envelope shall be suitable for Class 1, Division 2 areas.
- D. Furnish circuit and purpose identification for each remote manual switch and/or pushbutton station furnished herein. Identification may be either engraved plastic sign for permanent mounting to wall below switch, or stamping on switch coverplate. All such identification signs and/or switch covers in finished areas shall match other hardware in the immediate area.

2.10 ACCESS PANELS OTHER THAN SHEET METAL

A. Refer to Division 8 for specification of access doors.

2.11 IDENTIFICATION

- A. Equipment Labels:
 - 1. Metal Labels for Equipment:
 - a. Material and Thickness: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - b. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inches.
 - c. Minimum Letter Size: ½ inch for name of units. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - d. Fasteners: Stainless-steel rivets or self-taping screws.
 - e. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
 - 2. Plastic Labels for Equipment:
 - a. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
 - b. Letter Color: White.
 - c. Background Color: Black or blue.
 - d. Maximum Temperature: Able to withstand temperatures up to 160° F.

- Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- f. Minimum Letter Size: ¼ inch for name of units if viewing distance is less than 24 inches, ½ inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- Fasteners: Stainless-steel rivets or self-tapping screws. g.
- Adhesive: Contact-type permanent adhesive, compatible with label and with substrate. h.
- 3. Label Content: Include equipment's unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules).
- Equipment Label Schedule: Each item of equipment to be labeled on 8-1/2" x 11" (A4) bond 4. paper. Tabulate equipment identification number and identifying Drawing numbers where equipment is indicated (plans, details, and schedules), plus the specification section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

Pipe Labels: В.

- General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering 1. indicating service, and showing flow direction.
- 2. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing. 3.
- Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing. 4.
- 5. Pipe label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - a. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 - Lettering Size: At least 1-1/2 inches high. b.

C. Stencils:

- Stencils: Prepared with letter sizes according to ASME A13.1 for piping; minimum letter height 1. of 2 inches for ducts; and minimum letter heights of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.
- 2. Stencil Material: Fiberboard or metal.
- 3. Stencil Paint: Exterior, gloss enamel black unless otherwise indicated. Paint may be in pressurized spray-can form.
- 4. Identification Paint: Exterior enamel in colors according to ASME A13.1 unless otherwise indicated.

Valve Tags: D.

- Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 - Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped a. holes for attachment hardware.
 - Fasteners: Brass wire-link or beaded chain; or S-hook. b.
- Valve Schedules: For each piping system, on 8-1/2" x 11" (A4) bond paper. Tabulate valve 2. number, piping system, system abbreviation (as shown on valve tag), location of valve (room or

space), normal-operating position (open, closed or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

a. Valve-tag schedule shall be included in operation and maintenance data.

2.12 SECURITY FASTENERS

A. Security Fasteners: Provide security fasteners for all Division 21 items mounted in secured areas. Security fasteners shall be 5-lobe "TORXplus" as manufactured by TAMPER-PRUF SCREWS, Paramount, California.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS – COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 21 Sections specifying fire suppression piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Select system components with pressure rating equal to or great than system operating pressure.
- K. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 - 1. New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 - c. Insulated Piping: Split, cast-brass type with spring clips.
 - d. Bare Piping at Wall, Floor, and Ceiling Penetrations in Finished Spaces, Unfinished Service Spaces, and Equipment Rooms: One-piece or split, cast-brass type with polished chrome-plated finish.

- L. Sleeves are not required for core-drilled holes.
- M. Install sleeves for pipes passing through concrete and masonry walls, gypsum board partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.

 Exception: Extend sleeves installed on floors of mechanical equipment areas or other west areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 - 3. Install sleeves that are large enough to provide ¼-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials, seismic installation may require additional clearance:
 - a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 - b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions. Seal space outside of sleeve fittings with grout.
 - 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location or joint. Refer to Division 7 for materials and installation.
- N. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials listed for application. Refer to Division 7 for firestopping materials.
- O. Verify final equipment locations for roughing-in.
- P. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 21 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join Pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- E. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.3 ACCESS PANELS

A. Furnish access panels where required for access to concealed mechanical items such as dampers, valves, strainers, shock absorbers, cleanouts, control devices, and where required for equipment servicing.

B. Deliver all panels to General Contractor for installation. Provide instructions for their location in sufficient time so panels can be installed in the normal course of work.

3.4 IDENTIFICATION COMMON REQUIREMENTS

- A. Preparation: Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.
- B. Equipment Label Installation:
 - 1. Install or permanently fasten labels on each major item of mechanical equipment.
 - 2. Locate equipment labels where accessible and visible.
- C. Pipe Label Installation:
 - 1. Piping Color-Coding: Painting of piping is specified in Division 9.
 - 2. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - a. Near each valve and control device.
 - b. On fire mains and standpipes near penetrations through walls, floors, ceilings, and inaccessible enclosures. Identify branch mains and branches where it is not readily identifiable as fire piping from location of sprinkler heads.
 - c. At access doors, manholes, and similar access points that permit view of concealed piping.
 - d. On fire mains near major equipment items and other points of origination and termination.
 - e. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - f. Piping colors shall be per ANSI A13.1
- D. Valve Tag Installation: Install tags on control valves and inspector test valves. List tagged valves in a valve schedule.
 - 1. Valve-Tag Application: Label all valves with tags indicating service and number. Tags 1½ inches in diameter, brass, with 1/4 –inch high letters. Securely fasten with chain and hook. Match service abbreviations given on mechanical drawings.

3.5 PAINTING

- A. Painting of fire-suppression systems, equipment, and components is specified in Division 9 for interior painting and exterior painting.
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.6 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 5 for structural steel and Division 21 Section "Seismic and Blast Controls for Fire Suppression Work" for additional requirements.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor fire-suppression materials and equipment.
- C. Field Welding: Comply with AWS D1.1

End of Section 210500

SECTION 211313

WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Pipes, fittings, and specialties.
 - 2. Fire-protection valves.
 - 3. Fire-department connections.
 - 4. Sprinklers.
 - 5. Alarm devices.
 - 6. Pressure gauges.
- B. Additional requirements:
 - 1. Sprinkler lines in exposed areas shall be kept to a minimum and neatly arranged with care and craftsmanship for integration with the architecture of the building for no exposed mains. Preliminary diagrams/Layout of sprinkler routing shall be submitted to the architect/engineer for review prior to any system engineering or installation.
 - 2. Sprinkler layout in the main Auditorium and Stage must be reviewed by Architect/Engineer prior to any system engineering or installation. Pipe routing and head location impact lighting, rigging and function of theater/Auditorium.
 - 3. Gymnasiums require double interlock pre-action sprinkler systems.

1.2 SYSTEM DESCRIPTIONS

A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply through alarm valve. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

1.3 PERFORMANCE REQUIREMENTS

- A. Standard-Pressure Piping System Component: Listed for 175-psig (1200-kPa) minimum working pressure.
- B. Delegated Design: Design sprinkler system(s), including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated. All work performed shall be designed and sealed by a Licensed Fire Protection Engineer and installed by a fire protection installer whose principal business is installation and service of fire protection systems. Hydraulic calculations shall be based on contractor verified flow test information. Refer to plans for additional information.
- C. A Licensed Fire Protection Engineer shall be defined as listed below:
 - 1. A register professional engineer (P.E.) who has passed the **FIRE PROTECTION ENGINEERING** written examination administered by the National Council of Examiners for Engineering and Surveys (NCEES).
- D. Sprinkler system design shall be approved by authorities having jurisdiction.
 - 1. County Fire Authority.
 - 2. City Fire Authority.

- 3. Owners approving agency (if required).
- 4. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
- 5. Sprinkler Occupancy Hazard Classifications:
 - a. As per NFPA requirements.
- 6. Minimum Density for Automatic-Sprinkler Piping Design:
 - a. Residential (Dwelling) Occupancy: 0.05 gpm over 400-sq. ft. (2.04 mm/min. over 37.2-sq. m) area.
 - b. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. (4.1 mm/min. over 139-sq. m) area.
 - c. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. (6.1 mm/min. over 139-sq. m) area.
 - d. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. (8.1 mm/min. over 139-sq. m) area.
 - e. Extra-Hazard, Group 1 Occupancy: 0.30 gpm over 2500-sq. ft. (12.2 mm/min. over 232-sq. m) area.
 - f. Extra-Hazard, Group 2 Occupancy: 0.40 gpm over 2500-sq. ft. (16.3 mm/min. over 232-sq. m) area.
 - g. Special Occupancy Hazard: As determined by authorities having jurisdiction.
- 7. Maximum Protection Area per Sprinkler: Per UL listing.
- 8. Total Combined Hose-Stream Demand Requirement: According to NFPA 13 unless otherwise indicated:
 - a. Light-Hazard Occupancies: 100 gpm (6.3 L/s) for 30 minutes.
 - b. Ordinary-Hazard Occupancies: 250 gpm (15.75 L/s) for 60 to 90 minutes.
 - c. Extra-Hazard Occupancies: 500 gpm (31.5 L/s) for 90 to 120 minutes.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For wet-pipe sprinkler systems. Include plans, elevations, sections, details, and attachments to other work. Fire Protection shop drawings submitted for review shall be computer generated.
 - 1. Preliminary Routing Plan with layout neatly arranged and coordinated with architectural elements of building.
 - 2. Wiring Diagrams: For power, signal, and control wiring.
- C. Where CAD files or Revit models are deemed beneficial by contactor for contractors use in coordination, a service charge will be assessed for file preparation.
- D. Request for electronic files shall be submitted to Architect/Engineer with signed Data Release form including listed sheet numbers requested.
- E. A service charge of \$100 per sheet for preparation of electronic drawing files or Revit files will be charged for requested construction document sheets.
- F. Delegated-Design Submittal: For sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified licensed fire protection professional engineer responsible for their preparation.
- G. Qualification Data: For qualified Installer and professional engineer.

- H. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.
- I. Welding certificates.
- J. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."
- K. Field quality-control reports.
- L. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 - a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.
- B. Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 - 1. NFPA 13, "Installation of Sprinkler Systems."
 - 2. NFPA 13R, "Installation of Sprinkler Systems in Residential Occupancies up to and Including Four Stories in Height."
 - 3. NFPA 24, "Installation of Private Fire Service Mains and Their Appurtenances."

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS

- A. Standard Weight, Galvanized and Black-Steel Pipe: ASTM A 53/A 53M, Type E Insert type, Grade B. Pipe ends may be factory or field formed to match joining method.
- B. Thinwall Galvanized and Black-Steel Pipe: Thinwall allowed for applications that do not require threaded pipe. ASTM A 135 or ASTM A 795/A 795M, threadable, with wall thickness less than Schedule 30 and equal to or greater than Schedule 10. Pipe ends may be factory or field formed to match joining method.
- C. Galvanized and Black-Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M, standard-weight, seamless steel pipe with threaded ends.
- D. Galvanized and Uncoated, Steel Couplings: ASTM A 865, threaded.

- E. Galvanized and Uncoated, Gray-Iron Threaded Fittings: ASME B16.4, Class 125, standard pattern.
- F. Malleable or Ductile-Iron Unions: UL 860.
- G. Cast-Iron Flanges: ASME 16.1, Class 125.
- H. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.
- I. Steel Welding Fittings: ASTM A 234/A 234M and ASME B16.9.
- J. Grooved-Joint, Steel-Pipe Appurtenances:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Victaulic Company</u>.
 - 2. Pressure Rating: 175 psig (1200 kPa) minimum.
 - 3. Galvanized and Uncoated, Grooved-End Fittings for Steel Piping: ASTM A 47/A 47M, malleable-iron casting or ASTM A 536, ductile-iron casting; with dimensions matching steel pipe.
 - 4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.
- K. Steel Pressure-Seal Fittings: UL 213, FM-approved, 175-psig (1200-kPa) pressure rating with steel housing, rubber O-rings, and pipe stop; for use with fitting manufacturers' pressure-seal tools.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Victaulic Company.

2.3 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch (3.2 mm) thick or ASME B16.21, nonmetallic and asbestos free.
 - 1. Class 125, Cast-Iron Flat-Face Flanges: Full-face gaskets.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 LISTED FIRE-PROTECTION VALVES

- A. General Requirements:
 - 1. Valves shall be UL listed and FM approved.
 - 2. Minimum Pressure Rating: 175 psig (1200 kPa).
- B. Check Valves:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Globe Fire Sprinkler Corporation.
 - d. Kennedy Valve; a division of McWane, Inc.
 - e. <u>Metraflex, Inc</u>.

- f. Milwaukee Valve Company.
- g. <u>Mueller Co.; Water Products Division</u>.
- h. NIBCO INC.
- i. Potter Roemer.
- j. Reliable Automatic Sprinkler Co., Inc.
- k. Tyco Fire & Building Products LP.
- 1. United Brass Works, Inc.
- m. Victaulic Company.
- n. Viking Corporation.
- o. Watts Water Technologies, Inc.
- 2. Standard: UL 312.
- 3. Pressure Rating: 250 psig (1725 kPa) minimum.
- 4. Type: Swing check.
- 5. Body Material: Cast iron.
- 6. End Connections: Flanged or grooved.

C. Bronze OS&Y Gate Valves:

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Crane Co.; Crane Valve Group; Crane Valves.</u>
 - b. Milwaukee Valve Company.
 - c. NIBCO INC.
 - d. United Brass Works, Inc.
- 2. Standard: UL 262.
- 3. Pressure Rating: 175 psig (1200 kPa).
- 4. Body Material: Bronze.
- 5. End Connections: Threaded.

D. Iron OS&Y Gate Valves:

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. American Valve, Inc.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Milwaukee Valve Company.
 - d. <u>Mueller Co.</u>; Water Products Division.
 - e. NIBCO INC.
 - f. Tyco Fire & Building Products LP.
 - g. <u>United Brass Works, Inc.</u>
 - h. Watts Water Technologies, Inc.
- 2. Standard: UL 262.
- 3. Pressure Rating: 250 psig (1725 kPa) minimum.
- 4. Body Material: Cast or ductile iron.
- 5. End Connections: Flanged or grooved.

E. Indicating-Type Butterfly Valves:

1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:

- a. Anvil International, Inc.
- b. Global Safety Products, Inc.
- c. Kennedy Valve; a division of McWane, Inc.
- d. <u>Milwaukee Valve Company</u>.
- e. <u>NIBCO INC</u>.
- f. Tyco Fire & Building Products LP.
- g. <u>Victaulic Company</u>.
- 2. Standard: UL 1091.
- 3. Pressure Rating: 175 psig (1200 kPa) minimum.
- 4. Valves NPS 2 (DN 50) and Smaller:
 - a. Valve Type: Ball or butterfly.
 - b. Body Material: Bronze.
 - c. End Connections: Threaded.
- 5. Valves NPS 2-1/2 (DN 65) and Larger:
 - a. Valve Type: Butterfly.
 - b. Body Material: Cast or ductile iron.
 - c. End Connections: Flanged, grooved, or wafer.
- 6. Valve Operation: Integral electrical, 115-V ac, prewired, single-circuit, supervisory switch indicating device.

2.5 TRIM AND DRAIN VALVES

- A. General Requirements:
 - 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
 - 2. Minimum Pressure Rating: 175 psig (1200 kPa).
- B. Ball Valves:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. <u>Conbraco Industries, Inc.; Apollo Valves</u>.
 - c. FNW.
 - d. Kennedy Valve; a division of McWane, Inc.
 - e. Milwaukee Valve Company.
 - f. NIBCO INC.
 - g. <u>Potter Roemer</u>.
 - h. Tyco Fire & Building Products LP.
 - i. <u>Victaulic Company</u>.
 - j. Watts Water Technologies, Inc.

2.6 SPECIALTY VALVES

- A. General Requirements:
 - 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
 - 2. Minimum Pressure Rating: 175 psig (1200 kPa).
 - 3. Body Material: Cast or ductile iron.
 - 4. Size: Same as connected piping.

5. End Connections: Flanged or grooved.

B. Alarm Valves:

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Globe Fire Sprinkler Corporation.
 - b. Reliable Automatic Sprinkler Co., Inc.
 - c. Tyco Fire & Building Products LP.
 - d. Victaulic Company.
 - e. <u>Viking Corporation</u>.
- 2. Standard: UL 193.
- 3. Design: For horizontal or vertical installation.
- 4. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gauges, retarding chamber, and fill-line attachment with strainer.
- 5. Drip Cup Assembly: Pipe drain without valves and separate from main drain piping.
- 6. Drip Cup Assembly: Pipe drain with check valve to main drain piping.

C. Automatic (Ball Drip) Drain Valves:

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Reliable Automatic Sprinkler Co., Inc.
 - b. Tyco Fire & Building Products LP.
- 2. Standard: UL 1726.
- 3. Pressure Rating: 175 psig (1200 kPa) minimum.
- 4. Type: Automatic draining, ball check.
- 5. Size: NPS 3/4 (DN 20).
- 6. End Connections: Threaded.

2.7 FIRE-DEPARTMENT CONNECTIONS

- A. Flush-Type, Fire-Department Connection:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. AFAC Inc.
 - b. Elkhart Brass Mfg. Company, Inc.
 - c. GMR International Equipment Corporation.
 - d. <u>Guardian Fire Equipment, Inc.</u>
 - e. Potter Roemer.
 - 2. Standard: UL 405.
 - 3. Type: Flush, for wall mounting.
 - 4. Pressure Rating: 175 psig (1200 kPa) minimum.
 - 5. Body Material: Corrosion-resistant metal.
 - 6. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.
 - 7. Caps: Brass, lugged type, with gasket and chain.
 - 8. Escutcheon Plate: Rectangular, brass, wall type.
 - 9. Outlet: With pipe threads.

- 10. Body Style: as required for application.
- 11. Number of Inlets: Two.
- 12. Outlet Location: as required for application.
- 13. Escutcheon Plate Marking: Similar to "AUTO SPKR & STANDPIPE."
- 14. Finish: Polished chrome plated.
- 15. Outlet Size: NPS 4 (DN 100).

2.8 SPRINKLER SPECIALTY PIPE FITTINGS

A. Branch Outlet Fittings:

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. Tyco Fire & Building Products LP.
 - c. <u>Victaulic Company</u>.
- 2. Standard: UL 213.
- 3. Pressure Rating: 175 psig (1200 kPa) minimum.
- 4. Body Material: Ductile-iron housing with EPDM seals and bolts and nuts.
- 5. Type: Mechanical-T and -cross fittings.
- 6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
- 7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
- 8. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection and Test Assemblies:

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Reliable Automatic Sprinkler Co., Inc.
 - b. Tyco Fire & Building Products LP.
 - c. <u>Victaulic Company</u>.
- 2. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
- 3. Pressure Rating: 175 psig (1200 kPa) minimum.
- 4. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
- 5. Size: Same as connected piping.
- 6. Inlet and Outlet: Threaded.

C. Branch Line Testers:

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Elkhart Brass Mfg. Company, Inc.</u>
 - b. Fire-End & Croker Corporation.
 - c. Potter Roemer.
- 2. Standard: UL 199.
- 3. Pressure Rating: 175 psig (1200 kPa) minimum.
- 4. Body Material: Brass.
- 5. Size: Same as connected piping.
- 6. Inlet: Threaded.

- 7. Drain Outlet: Threaded and capped.
- 8. Branch Outlet: Threaded, for sprinkler.
- D. Sprinkler Inspector's Test Fittings:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Tyco Fire & Building Products LP.
 - b. <u>Victaulic Company</u>.
 - c. Viking Corporation.
 - 2. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
 - 3. Pressure Rating: 175 psig (1200 kPa) minimum.
 - 4. Body Material: Cast- or ductile-iron housing with sight glass.
 - 5. Size: Same as connected piping.
 - 6. Inlet and Outlet: Threaded.
- E. Flexible, Sprinkler Hose Fittings:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Fivalco Inc.
 - b. <u>FlexHead Industries</u>.
 - c. Gateway Tubing, Inc.
 - d. <u>Victaulic Company</u>.
 - 2. Standard: UL 1474.
 - 3. Type: Flexible hose for connection to sprinkler, and with bracket for connection to ceiling grid.
 - 4. Pressure rating: 175 psig (1200 kPa) minimum.
 - 5. Size: Same as connected piping, for sprinkler.

2.9 SPRINKLERS

- A. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Central Sprinkler Corporation.
 - 2. Globe Fire Sprinkler Corporation.
 - 3. Reliable Automatic Sprinkler Co., Inc.
 - 4. Tyco Fire & Building Products LP.
 - 5. Victaulic Company.
 - 6. <u>Viking Corporation</u>.
- B. General Requirements:
 - 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
 - 2. Pressure Rating for Residential Sprinklers: 175 psig (1200 kPa) maximum.
 - 3. Pressure Rating for Automatic Sprinklers: 175 psig (1200 kPa) minimum.
 - 4. Pressure Rating for High-Pressure Automatic Sprinklers: 250 psig (1725 kPa) minimum.
- C. Automatic Sprinklers with Heat-Responsive Element:
 - 1. Early-Suppression, Fast-Response Applications: UL 1767.

- 2. Nonresidential Applications: UL 199.
- 3. Residential Applications: UL 1626.
- 4. Characteristics: Nominal 1/2-inch (12.7-mm) orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.

D. Sprinkler Finishes:

- 1. Chrome plated.
- 2. Bronze.
- 3. Painted.

E. Special Coatings:

- 1. Wax.
- 2. Lead.
- 3. Corrosion-resistant paint.
- F. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 - 1. Ceiling Mounting: Chrome-plated steel, one piece, flat.
 - 2. Sidewall Mounting: Chrome-plated steel, one piece, flat.

G. Sprinkler Guards:

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Reliable Automatic Sprinkler Co., Inc.
 - b. Tyco Fire & Building Products LP.
 - c. Victaulic Company.
 - d. <u>Viking Corporation</u>.
- 2. Standard: UL 199.
- 3. Type: Wire cage with fastening device for attaching to sprinkler.

2.10 ALARM DEVICES

- A. Alarm-device types shall match piping and equipment connections.
- B. Water-Motor-Operated Alarm:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Globe Fire Sprinkler Corporation.
 - b. Tyco Fire & Building Products LP.
 - c. Victaulic Company.
 - d. Viking Corporation.
 - 2. Standard: UL 753.
 - 3. Type: Mechanically operated, with Pelton wheel.
 - 4. Alarm Gong: Cast aluminum with red-enamel factory finish.
 - 5. Size: 10-inch (250-mm) diameter.
 - 6. Components: Shaft length, bearings, and sleeve to suit wall construction.
 - 7. Inlet: NPS 3/4 (DN 20).
 - 8. Outlet: NPS 1 (DN 25) drain connection.

C. Water-Flow Indicators:

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. McDonnell & Miller; ITT Industries.
 - b. <u>Potter Electric Signal Company</u>.
 - c. System Sensor; a Honeywell company.
 - d. <u>Viking Corporation</u>.
 - e. <u>Watts Industries (Canada) Inc.</u>
- 2. Standard: UL 346.
- 3. Water-Flow Detector: Electrically supervised.
- 4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
- 5. Type: Paddle operated.
- 6. Pressure Rating: 250 psig (1725 kPa).
- 7. Design Installation: Horizontal or vertical.

D. Valve Supervisory Switches:

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Fire-Lite Alarms, Inc.; a Honeywell company.
 - b. Kennedy Valve; a division of McWane, Inc.
 - c. <u>Potter Electric Signal Company</u>.
 - d. System Sensor; a Honeywell company.
- 2. Standard: UL 346.
- 3. Type: Electrically supervised.
- 4. Components: Single-pole, double-throw switch with normally closed contacts.
- 5. Design: Signals that controlled valve is in other than fully open position.

2.11 PRESSURE GAUGES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AMETEK; U.S. Gauge Division.
 - 2. Ashcroft, Inc.
 - 3. Brecco Corporation.
 - 4. WIKA Instrument Corporation.
- B. Standard: UL 393.
- C. Dial Size: 3-1/2- to 4-1/2-inch (90- to 115-mm) diameter.
- D. Pressure Gauge Range: 0 to 250 psig (0 to 1725 kPa) minimum.
- E. Water System Piping Gauge: Include "WATER" or "AIR/WATER" label on dial face.
- F. Air System Piping Gauge: Include retard feature and "AIR" or "AIR/WATER" label on dial face.

PART 3 - EXECUTION

3.1 SERVICE-ENTRANCE PIPING

A. Connect sprinkler piping to water-service piping for service entrance to building.

- B. Install shutoff valve, backflow preventer, pressure gauge, drain, and other accessories indicated at connection to water-service piping.
- C. Install shutoff valve, check valve, pressure gauge, and drain at connection to water service.

3.2 PIPING INSTALLATION

- A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.
 - 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
- B. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13.
- C. Install seismic restraints on piping. Comply with requirements for seismic-restraint device materials and installation in NFPA 13.
- D. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.
- E. Install unions adjacent to each valve in pipes NPS 2 (DN 50) and smaller.
- F. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 (DN 65) and larger end connections.
- G. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.
- H. Install sprinkler piping with drains for complete system drainage.
- I. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.
- J. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.
- K. Install alarm devices in piping systems.
- L. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.
- M. Install pressure gauges on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gauges with connection not less than NPS 1/4 (DN 8) and with soft metal seated globe valve, arranged for draining pipe between gauge and valve. Install gauges to permit removal, and install where they will not be subject to freezing.
- N. Fill sprinkler system piping with water.
- O. Install sleeves for piping penetrations of walls, ceilings, and floors.
- P. Install sleeve seals for piping penetrations of concrete walls and slabs.
- Q. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.3 **JOINT CONSTRUCTION**

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

- B. Install unions adjacent to each valve in pipes NPS 2 (DN 50) and smaller.
- C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 (DN 65) and larger end connections.
- D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.
- G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- H. Twist-Locked Joints: Insert plain end of steel pipe into plain-end-pipe fitting. Rotate retainer lugs one-quarter turn or tighten retainer pin.
- I. Steel-Piping, Pressure-Sealed Joints: Join lightwall steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.
- J. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
 - 1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.
- K. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.
- L. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.
- M. Steel-Piping, Pressure-Sealed Joints: Join Schedule 5 steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.
- N. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.4 VALVE AND SPECIALTIES INSTALLATION

- A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.
- B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.
- C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.
- D. Specialty Valves:

- 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.
- 2. Alarm Valves: Include bypass check valve and retarding chamber drain-line connection.

3.5 SPRINKLER INSTALLATION

- A. Install sprinklers in suspended ceilings in center of narrow dimension of acoustical ceiling panels.
- B. Install dry-type sprinklers with water supply from heated space. Do not install pendent or sidewall, wettype sprinklers in areas subject to freezing.
- C. Install sprinklers into flexible, sprinkler hose fittings and install hose into bracket on ceiling grid.

3.6 REMODEL AND RENOVATION SPRINKLER INSTALLATION

- A. Sprinkler contractor shall re-configure existing sprinkler system for floor plan, wall and ceiling changes.
- B. Sprinkler contractor shall move sprinkler lines and sprinkler heads that need relocation due to floor plan, wall or ceiling changes.

3.7 FIRE-DEPARTMENT CONNECTION INSTALLATION

- A. Install wall-type, fire-department connections.
- B. Install automatic (ball drip) drain valve at each check valve for fire-department connection.

3.8 IDENTIFICATION

- A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.
- B. Identify system components, wiring, cabling, and terminals.

3.9 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 - 4. Energize circuits to electrical equipment and devices.
 - 5. Coordinate with fire-alarm tests. Operate as required.
 - 6. Coordinate with fire-pump tests. Operate as required.
 - 7. Verify that equipment hose threads are same as local fire-department equipment.
- C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.10 CLEANING

- A. Clean dirt and debris from sprinklers.
- B. Remove and replace sprinklers with paint other than factory finish.

3.11 PIPING SCHEDULE

A. Piping between Fire-Department Connections and Check Valves: Galvanized, standard-weight steel pipe with threaded ends; cast-iron threaded fittings; and threaded joints.

- B. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.
- C. Wet-pipe sprinkler system, NPS 2 (DN 50) and smaller, shall be one of the following:
 - 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 - 2. Standard-weight, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 - 3. Thinwall black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
- D. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 to NPS 6 (DN 65 to DN 150), shall be one of the following:
 - 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 - 2. Standard-weight, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

3.12 SPRINKLER SCHEDULE

- A. Use sprinkler types in subparagraphs below for the following applications:
 - 1. Rooms without Ceilings: Upright sprinklers.
 - 2. Rooms with Suspended Ceilings: Concealed sprinklers.
 - 3. Wall Mounting: Sidewall sprinklers.
 - 4. Spaces Subject to Freezing: Upright, pendent, dry sprinklers; and sidewall, dry sprinklers.
 - 5. Special Applications: Extended-coverage, flow-control, and quick-response sprinklers.
- B. Provide sprinkler types in subparagraphs below with finishes indicated.
 - 1. Concealed Sprinklers: Rough brass, with factory-painted white cover plate.
 - 2. Flush Sprinklers: Bright chrome, with painted white escutcheon.
 - 3. Recessed Sprinklers: Bright chrome, with bright chrome escutcheon.
 - 4. Residential Sprinklers: Dull chrome.
 - 5. Upright Pendent and Sidewall Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

End of Section 211313

SECTION 230000

GENERAL MECHANICAL REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. All Products shall be made in America or comply with the Buy American Act.
- B. Provisions of the General Conditions, Supplementary Conditions and Division 01 General Requirements, and applicable provisions elsewhere in the Contract Documents apply to work of Division 23.
- C. In case of disagreement between Drawings and Specifications, or within either document itself, obtain a written clarification from the Mechanical Engineer through the Architect. Failure to obtain clarification prior to bid will result in the better quality and greater quantity being required during the construction phase without additional reimbursement.

1.2 DESCRIPTION OF WORK

- A. Work Included: Unless specified otherwise, provide all supervision, labor, materials, transportation, equipment, hauling, and services necessary for a complete and operational mechanical system. Provide all incidental items such as offsets, fittings, etc. required as part of the work even though not specifically shown on Contract Drawings or in Specifications.
- B. Inspection: Inspect work proceeding or interfacing with work of Division 23 sections prior to submitting bid and report any known or observed defects that affect the Mechanical Design to the General Contractor. Do not proceed with the construction work until defects are corrected.
- C. Permission for the use of new HVAC equipment to be used as a method for providing temporary heating or cooling shall be at the discretion of the owner. The use of new HVAC equipment for temporary heating or cooling shall not modify the terms of the warranty nor shall it constitute substantial completion or beneficial use. The Mechanical Contractor is responsible for providing a dust free HVAC system and shall correct all equipment or system damage caused by construction operations. New HVAC equipment used for temporary heating or cooling shall have the filters changed on a regular basis or as directed by the owner and prior to turning over equipment for permanent operation. The spare filters provided by the specifications shall not be used for this purpose. The equipment fan belts shall be inspected for excessive wear and replaced as directed by the owner. The equipment cooling coils, condensing coils, heat exchangers, energy recovery devices and associated ductwork shall be inspected for cleanliness and cleaned as directed by the owner, to a level satisfactory to the owner which may include this work to be done by an independent third party contractor at this contractors expense.
- D. The mechanical contractor may provide temporary heating and cooling as directed and scheduled by general contractor/construction manager once owner permission to do so is provided in writing to Architect/Engineer. If permanent heating and cooling systems are allowed to be utilized by owner, extended warranties on all equipment shall be in place prior to use. In addition to extended warranties, contractor shall provide weekly temporary filter changes at all permanent air distribution equipment being used to ensure ductwork remains clean for owner acceptance.
- E. It shall be the responsibility of the contractor to clean the equipment, make necessary adjustments and place the equipment into operation before turning equipment over to the Owner. Any paint that was scratched during construction shall be touched-up with factory color paint. Any items that were damaged during construction shall be replaced.

1.3 REFERENCES

A. General:

- 1. For products or workmanship by Association, Trade, or Federal Standards, comply with requirements of the standard, except when more rigid requirements are specified or are required by applicable codes.
- 2. The date of the standard is that which is in effect as of the date of the Contract Documents, except when a specific date is specified.

1.4 OUALITY CONTROL

- A. Materials and apparatus required for the work shall be new and of first-class quality; to be furnished, delivered, erected, connected and finished in every detail; and to be so selected and arranged so as to fit properly into the building spaces.
- B. Unless otherwise specifically indicated, equipment and materials shall be installed in accordance with the recommendations of the manufacturer. This includes the performance of tests as recommended by the manufacturer.

1.5 EXAMINATION OF CONTRACT DRAWINGS AND SPECIFICATIONS

- A. The Mechanical Drawings show the general arrangement of piping, ductwork, mechanical equipment, and appurtenances, and shall be followed as closely as actual building construction and the work of other trades will permit.
- B. The Architectural and Structural Drawings shall be considered part of the mechanical work insofar as the Drawings furnish this Division with information relating to design and construction of the building.
- C. Field verify building dimensions governing mechanical work. Do not scale the Mechanical Drawings for dimensions. If field dimensions are not available take dimensions, measurements, locations, levels, etc. from the Architectural Drawings and the approved Shop Drawings submitted on the actual equipment to be furnished.
- D. The Mechanical Contractor shall request the Test and Balance (TAB) Contractor perform an early review of the Contract Documents for the purpose of becoming familiar with project requirements & identifying areas where proper balancing cannot be achieved. The report requirements are referred to in Division 23, Testing, Adjusting and Balancing section, "Submittals." Forward a copy of the report to the mechanical engineer for review. The Mechanical Contractor shall modify the system as recommended by the TAB Contractor or refer unresolved issues to the Mechanical Engineer for resolution prior to ordering of ductwork and equipment. Unresolved balancing issues from untimely or incomplete application of these requirements will be the responsibility of the Mechanical Contractor to correct.
- E. No extra compensation shall be claimed or allowed due to differences between the actual dimensions and those indicated on the Drawings.
- F. Discrepancies: Examine Drawings and Specifications for other parts of the work, and if any discrepancies occur between the plans for the work of this Division and the plans for the work of others, report such discrepancies to the General Contractor and obtain written instructions for any changes necessary. Report any inconsistencies between the drawings and specifications and the installation requirements of equipment manufacturers.
- G. Order of Precedence: The precedence of Mechanical Construction Documents is as follows:
 - 1. Addenda and modifications to the Drawings and Specifications take precedence over the original Drawings and Specifications.
 - 2. Should there be a conflict within the Specifications or within Drawings of the same scale, the more stringent or higher quality requirements shall apply.

- 3. In the Drawings, the precedence shall be figured dimensions over scaled dimensions and noted materials over graphic indications.
- 4. Should a conflict arise between the Drawings and the Specifications the most stringent shall have precedence.
- 5. Should there be a conflict in dimensions or locations between Mechanical Drawings and/or Architectural/Structural Drawings, the Architectural/Structural Drawings shall have precedence.

1.6 EXAMINATION OF PROJECT SITE

- A. Examine site carefully to determine conditions to be encountered, work to be performed, equipment, materials to be transported, stored, furnished, and other features applicable to completion of work.
- B. Study Drawings and specifications, report inconsistencies, errors, omissions, or conflicts with codes and ordinances.
- C. Submittal of bid will indicate satisfactory examination of the Documents have been made, and applicable allowances included in the bid.

1.7 REGULATORY REQUIREMENTS

- A. Refer to Architectural Drawings and Division 01 specifications for a list of applicable codes.
- B. Execute work per Underwriters, Public Utility, Local and State Codes, Ordinances and applicable regulations. Obtain and pay for required permits, inspections, and certificates. Notify Architect of items not meeting said requirements.
- C. Comply with latest editions of all applicable codes, standards, ordinances and regulations in effect as of the date of the Contract Documents.
- D. If discrepancies occur between the Contract Documents and any applicable codes, ordinances, acts, or standards, the most stringent requirements shall apply.
- E. Where hourly fire and smoke ratings are indicated and required, whether or not shown, provide components and assemblies meeting requirements of the American Insurance Association, Factory Mutual Insurance Association and listed by Underwriters Laboratories, Inc.

1.8 COORDINATION

- A. The Contractor shall plan all of his work in advance, and shall inform the General Contractor of the proposed construction schedule and anticipated completion date upon request. Contractor shall complete the entire installation as soon as the condition of the remaining building construction will permit.
- B. Before purchase, fabrication, or installation of items, determine if the installation will properly fit and can be installed as contemplated without interference with structural elements or the work of other trades.
- C. Locations of pipes, ducts, switches, panels, equipment, and fixtures, shall be adjusted to accommodate the work or interferences anticipated and encountered. Determine the exact route and location of each pipe and duct prior to fabrication.
- D. Right of Way: Lines which pitch shall have the right-of-way over those which to not pitch. Lines whose elevations cannot be changed shall have right-of-way over lines whose elevations can be changed.
- E. Offsets, transitions, and changes in direction of pipes and ducts shall be made as required to maintain proper head room and pitch of sloping lines whether or not indicated on the Drawings.
- F. Where major conflicts occur, contractor shall rely upon the Architect/Engineer to make final decision regarding priority of right-of-way. Contractor shall requires written clarification from the

Architect/Engineer prior to conflict reaching critical stage requiring removal of previously installed equipment or system components either by himself or by other trades involved.

G. When directed by the Architect/Engineer, submit Shop Drawings showing interrelationship of various portions of work and work of other trades. Failure to properly coordinate may result in removal and relocation at expense to the Contractor.

H. Coordination Drawings:

- 1. The HVAC contractor shall prepare reproducible Coordination Layout and Installation Drawings (at least ¼" scale) for coordination of systems interferences and conflicts with other trades.
- 2. The Plumbing, Fire Protection, and Electrical Contractors, as well as acoustical and drywall ceiling contractors, are required to superimpose their Shop Drawings on the HVAC Drawings and verify layout and elevations to eliminate conflicts. Any conflicts shall be highlighted and these Drawings shall be forwarded to the Architect for resolution. Priority shall be given to "gravity" systems above the ceiling. Each trade shall initial acknowledgement that the proceeding has been completed. No fabrication of ductwork, fire protection, or other prefabricated systems shall begin until these Coordination Drawings have been completed and review by the General Contractor and Architect/Engineers. Any Subcontractor that fabricates and installs items above the ceiling before the Coordinated Drawings are reviewed and conflicts resolved shall do so at their own risk, and be responsible to relocate said equipment in the event conflicts arise, at no cost to the Owner.
- 3. Duct layout on coordination drawings shall include duct size, length, fittings, and pressure class of each duct.
- 4. Additionally, all trades shall show the proposed location of access panels (for maintenance) in "hard" ceilings for access to HVAC boxes, control valves, damper motors, plumbing valves, fire protection drains, valves, light fixture remote ballasts, ceiling hung equipment, etc., for coordination with the reflected ceiling plans. Indicate on same Drawings the location of access panels in walls as well as location of plumbing cleanouts.
- 5. Upon Architect/Engineer completion of the review of the Coordination Drawings, the Design Team, General Contractor and Subcontractors shall conduct a pre-installation coordination meeting for all "fit-up" above ceilings. No ceiling shall be lowered without the expressed approval of the Owner and the Architect.
- I. Coordinate all electrical work with Electrical Contractor. Read the Electrical Specification and report any inconsistencies. See "Electrical Wiring and Safety Device Work and Material Responsibilities" in this section.
- J. Coordinate all cutting & patching with General Contractor.
- K. Utility Interruptions: Coordinate mechanical utility interruptions with the Owner and the Utility Company. Plan work so that duration of the interruption is kept to a minimum.
- L. Where CAD files or Revit models are deemed beneficial by contactor for contractors use in coordination, a service charge will be assessed for file preparation.
- M. Request for electronic files shall be submitted to Architect/Engineer with signed Data Release form including listed sheet numbers requested.
- N. A service charge of \$100 per sheet for preparation of electronic drawing files or Revit files will be charged for requested construction document sheets.

1.9 PROJECT CONDITIONS

A. Accessibility:

- 1. Contractor shall be responsible for the sufficiency of the size of shafts and chases and the adequate clearance in double partitions and hung ceilings for proper installation of work. Coordinate these requirements with the General Contractor. Such spaces and clearances shall be kept to the minimum size required.
- 2. Locate all equipment which must be serviced, operated, or maintained in fully accessible positions. Furnish access doors for this purpose. Minor deviations from Drawings may be allowed to provide better accessibility. Any changes shall be approved by the Architect prior to making the change.
- 3. Provide the General Contractor with the exact locations of access doors. Locations of these doors shall be submitted in sufficient time to be installed in the normal course of work.
- 4. Demonstration of access will be required prior to project completion. The contractor is responsible for providing reasonable and safe access for all system components. Contractor to arrange with an Owner's Representative a time for the demonstration prior to the final punchlist.
- B. Fabrication: Before installing and/or fabricating any lines of piping or ductwork the Contractor shall assure himself that they can be run as contemplated in cooperation with Contractors of other Divisions of the Work and the physical constraints of the Structural and Architectural work.
- C. Freeze Protection: Do not run pipes in outside walls, or locations where freezing may occur. Piping next to outside walls shall be in furred spaces with insulation between the piping and the outside wall. Insulation of piping shall not be considered freeze protection.
- D. Scaffolding, Rigging and Hoisting: Provide scaffolding, rigging, hoisting and services necessary for erection and delivery into the premises of any equipment and apparatus furnished. Remove same from premises when no longer required.

1.10 SUBMITTALS

A. Within thirty (30) days after award of the Contract, submit to Architect complete catalog data and/or Shop Drawings for each item of material and for every manufactured item of equipment to be used in the work. Such data shall include specific performance data, material description, rating, capacity, dimensions, and type for each item of material, each manufactured item, and all component parts utilized in final operating mechanical system. Applicable data shall be underline in each applicable item identified in each catalog by the same identification acronyms used on the Drawings.

B. Seismic Restraint Plan

- 1. The contractor shall provide a vibration and seismic restraint plan for project designated in a Seismic Design Category C (with a seismic importance factor greater than 1.0), D, E, or F as found on the structural drawings. The plan shall include stamped and signed drawings for the state in which the project is located, details, equipment cutsheets, and analysis from one of the acceptable equipment manufacturers listed below for the entire project scope. The Contractor will provide the selected equipment manufacturer with a copy of the drawings, specifications, soils reports and any other pertinent information necessary to perform the vibration and seismic restraint analysis per pertinent codes.
- 2. Acceptable Manufacturers:
 - a. Mason Industries, Inc.
 - b. Kinetics Noise Control, Inc.
 - c. M.W. Sausse & Co., Inc.
 - d. Amber/Booth, a VMC Company.
- C. This Contractor shall submit to the Architect the number of copies required by the General and Special Conditions of Division 01, but in no case less than four (4) copies.

- D. Each item submitted shall bear the Contractor's stamp, be dated and signed certifying that he has reviewed and approved the Submittal.
- E. For each item scheduled on the Drawings, submit a replication of that schedule indicating actual data of the submitted equipment in the schedule.
- F. The review comments of the Architect and/or Engineer do not in any case supersede the Drawings and Specifications, and shall not relieve the Contractor from responsibility for deviations from the Drawings or Specifications unless the Contractor has called to the attention of the Architect and/or Engineer, in writing, such deviations at the time of submission, nor shall it relieve the Contractor from responsibility for errors of any sort in the items submitted.
- G. Test Reports: Submit certified test reports as required by various Section of Division 23 showing compliance in accordance with the General Conditions of the Contract.
- H. Deviations: It is the Contractor's responsibility to indicate deviations from the Plans and Specifications. Approval shall not be considered acceptance of the deviation unless it has been explicitly indicated.

1.11 SITE OBSERVATION REPORTS

- A. During the construction period the Engineer may issue periodic site observation reports. The contractor shall immediately address the issues and provide a written response identifying the "Responsible Contractor," "Date," "Corrective Action Take," and "Recommendations."
- B. The written response must be returned to the Architect no later than five (5) working days after receipt of the site observation report.

1.12 PRODUCT OPTIONS AND SUBSTITUTIONS

- A. Substitutions: Comply with Division 01 & Instructions to Bidders.
- B. Contractors desiring to use alternate equipment or materials and manufacturers or suppliers desiring to furnish alternate materials or equipment in lieu of those specified, shall submit requests for approval to the Engineer not less than seven (7) calendar days prior to scheduled closing date for receipt of proposals.
- C. Materials and equipment are specified by manufacturer and catalog numbers. The manufacturers and catalog numbers are used to establish a degree of quality and style for such equipment and material.
- D. When alternate or substitute materials and equipment are used, Contractor will be responsible for space requirement, configurations, performance, changes in bases, supports, structural members and openings in structure, electrical changes and other apparatus and trades that may be affected by their use. Contractor shall provide drawings for alternate/substitute equipment in detail equal to the construction documents.

1.13 PROJECT RECORD DOCUMENTS

- A. General: Comply with Division 01.
- B. Job Site Documents: Maintain at the job site, one record copy of the following:
 - 1. Drawings.
 - 2. Specifications.
 - 3. Addenda.
 - 4. Reviewed Shop Drawings.
 - 5. Field Test Records.
- C. Do not use record documents for construction purposes. Maintain documents in clean, dry legible condition, apart from documents used for construction.

- D. Record Information: Label each document "Record Document." Mark information with contrasting color using ink. Keep each record current. Do not permanently conceal any work until required information is recorded. Record the following information on drawings:
 - 1. Horizontal and vertical location of underground utilities.
 - 2. Location of internal utilities and appurtenances concealed in construction.
 - 3. Field changes of dimension and detail.
 - 4. Changes by change order or field order.
 - 5. Details not on original Contract Drawings.
- E. Contractor shall transfer all as-built information on to CAD files. Electronic copy will be provided upon request.
- F. Record the following information on Specifications:
 - 1. Manufacturer, trade name, catalog number and supplier of each product and item of equipment actually installed.
 - 2. Changes by change order or field order.
 - 3. Other matters not originally specified.
- G. Shop Drawings: Maintain Shop Drawings as record documents recording changes made after review as specified for drawings above.

1.14 DELIVERY, STORAGE AND HANDLING

- A. Deliver and store materials and equipment in manufacturer's unopened containers fully identified with manufacturer's name, trade name, type, class, grade, size, and color.
- B. Protection: Make provisions for coordination with Owner and other Contractors for safe storage of materials and equipment. Store materials and equipment off the ground and under cover, protected from damage.
- C. All items subject to moisture damage, such as controls, shall be store in a dry, heated space.
- D. Large Items: Make arrangements with other Contractors on the job for introduction into the building of equipment too large to pass though finished openings. Schedule deliver of large equipment required special openings as required for installation without delaying the work of other project trades.
- E. Acceptance: Check and sign for materials to be furnished by Division 23 and other trades for installation under Division 23 upon delivery. Assume responsibility for the storage and safekeeping of such materials from time of deliver until final acceptance.
- F. Inspection: Stored material shall be readily accessible for inspection by the Architect until installed.

1.15 WARRANTIES

- A. Warranty: In accordance with Division 01, provide a written warranty to the Owner covering the entire mechanical work to be free from defective materials, equipment and workmanship. If the warranty period is not defined in Division 01, the minimum warranty period will be for a period of one year after Date of Acceptance. Purchase of manufacturer's extended warranty may be required to comply with the warranty period requirement. During this period provide labor and materials as required to repair or replace defects at no additional cost to the Owner. Provide certificates for such items of equipment which have warranties in excess of one year. Submit to the General Contractor.
- B. This warranty will be in addition to the terms of any specific equipment warranties or warranty modifications resulting from use of equipment for temporary heat or ventilation.

1.16 SCHEDULE OF TESTING

- A. Provide testing in accordance with the General Conditions of the Contract. Make all specified tests on piping, ductwork and related system as necessary. Demonstrate the proper operation of equipment installed under this project.
- B. Equipment shall not be tested, or operated for any purpose until fully lubricated in accordance with manufacturer's instructions and until connections to fully operative systems have been accomplished.
- C. A schedule of testing shall be drawn up by the Division 23 Contractor in such a manner that it will shower areas tested, test pressure, length of test, date, time and signature of testing personnel. All testing must be performed in the presence of the General Contractor's Representative; his signature for verification of the test must appear on the schedule. At completion of testing, the schedule shall then be submitted in triplicate to the Architect.
- D. Make sure operation and performance tests are made on seasonal equipment.
- E. Complete all tests required by Code Authorities, such as smoke detection, life safety, fire protection and health codes.

1.17 DEMONSTRATION OF ACCESS

A. The Contractor shall demonstrate to the Owner's designated representative the access to all switches, valves, actuators, dampers, motors, lubrication lines, sensors and panels. Contractor shall correct deficiencies note by the Owner. Refer outstanding issues to the Architect/Engineer for resolution. Contractor to be responsible for arranging the demonstration prior to final inspection.

1.18 CERTIFICATES AND KEYS

- A. Certificates: Upon completion of the work, deliver to the General Contractor one copy of Certificate of Final Inspection.
- B. Keys: Upon completion of the work, submit keys for mechanical equipment, panels, etc. to the General Contractor.

1.19 OPERATING AND MAINTENANCE DATA

- A. Include the following information in addition to operation and maintenance information required by Division 01 standards and other Division 23 standards.
- B. Submit three (3) typed and bound copies of the maintenance manual, 8-1/2" x 11" in size, to the Architect, for review and approval. These approved copies shall then be transmitted to the Owner.
- C. The manual shall be enclosed in a stiff-back, three-ring binder and shall have:
 - 1. Table of Contents, Equipment List with identification used in contract documents.
 - 2. Alphabetical list of all system components including the name, address, and 24-hour phone number of the company responsible for servicing each item during the first year of operation.
 - 3. Operating instructions for complete system, including procedures for fire or failure of major equipment and procedures for normal staring/operating/shutdown and long-term shutdown.
 - 4. Maintenance instructions, including valves, valve tag and other identified equipment lists, proper lubricants and lubricating instructions for each piece of equipment and necessary cleaning/replacing/adjusting schedules.
 - 5. Manufacturer's data on each piece of equipment, including:
 - a. Installation instructions.
 - b. Drawings and Specifications (approved Shop Drawings).
 - c. Part lists.
 - d. Complete wiring and temperature control diagrams (approved Shop Drawings).

e. Completed and approved TAB report.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION (Not Applicable)

End of Section 230000

SECTION 230517

SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Sleeve-seal systems.
 - 3. Grout.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- D. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
- E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.

2.2 SLEEVE-SEAL SYSTEMS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Advance Products & Systems, Inc.
 - 2. CALPICO, Inc.
 - 3. Metraflex Company (The).
 - 4. Pipeline Seal and Insulator, Inc.
 - 5. Proco Products, Inc.
- B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Carbon steel.
 - 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 GROUT

A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.

- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch (25-mm) annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches (50 mm) above finished floor level.
 - 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint.
- E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6 (DN 150): Cast-iron wall sleeves.
 - b. Piping NPS 6 (DN 150) and Larger: Cast-iron wall sleeves.
 - 2. Exterior Concrete Walls below Grade:
 - a. Piping Smaller Than NPS 6 (DN 150): Galvanized-steel-pipe sleeves with sleeve-seal system.

- 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
- b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:

- a. Piping Smaller Than NPS 6 (DN 150): Galvanized-steel-pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
- b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
- 4. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6 (DN 150): Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-pipe sleeves.
- 5. Interior Partitions:
 - a. Piping Smaller Than NPS 6 (DN 150): PVC-pipe sleeves.
 - b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-sheet sleeves.

End of Section 230517

SECTION 230529

HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Thermal-hanger shield inserts.
 - 4. Fastener systems.
 - 5. Equipment supports.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 - 1. Trapeze pipe hangers.
 - 2. Equipment supports.
- C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.3 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.4 QUALITY ASSURANCE

- A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
- B. Stainless-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.

- 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
- 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.

C. Copper Pipe Hangers:

- 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
- 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel or stainless steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 THERMAL-HANGER SHIELD INSERTS

- A. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig (688-kPa) or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig (862-kPa) minimum compressive strength and vapor barrier.
- B. Insulation-Insert Material for Hot Piping: ASTM C 552, Type II cellular glass with 100-psig (688-kPa) or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig (862-kPa) minimum compressive strength.
- C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- E. Insert Length: Extend 2 inches (50 mm) beyond sheet metal shield for piping operating below ambient air temperature.

2.4 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless-steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.6 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, A. clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. 2. Weld steel according to AWS D1.1/D1.1M.
- C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- D. Fastener System Installation:
 - Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 1. inches (100 mm) thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powderactuated tool manufacturer's operating manual.
 - Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. 2. Install fasteners according to manufacturer's written instructions.
- Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, E. and other accessories.
- F. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- G. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- H. Install lateral bracing with pipe hangers and supports to prevent swaying.
- I. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 (DN 65) and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- J. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum K. pipe deflections allowed by ASME B31.9 for building services piping.
- L. **Insulated Piping:**
 - 1. Attach clamps and spacers to piping.
 - Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with b. clamp sized to match OD of insert.
 - Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.

- a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.
- 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2 (DN 8 to DN 90): 12 inches (305 mm) long and 0.048 inch (1.22 mm) thick.
 - b. NPS 4 (DN 100): 12 inches (305 mm) long and 0.06 inch (1.52 mm) thick.
 - c. NPS 5 and NPS 6 (DN 125 and DN 150): 18 inches (457 mm) long and 0.06 inch (1.52 mm) thick.
 - d. NPS 8 to NPS 14 (DN 200 to DN 350): 24 inches (610 mm) long and 0.075 inch (1.91 mm) thick.
 - e. NPS 16 to NPS 24 (DN 400 to DN 600): 24 inches (610 mm) long and 0.105 inch (2.67 mm) thick.
- 5. Pipes NPS 8 (DN 200) and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
- 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches (40 mm).

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.
- F. Use stainless-steel pipe hangers and stainless-steel or corrosion-resistant attachments for hostile environment applications.
- G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.
- H. Use padded hangers for piping that is subject to scratching.
- I. Use thermal-hanger shield inserts for insulated piping and tubing.
- J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30 (DN 15 to DN 750).
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F (566 deg C), pipes NPS 4 to NPS 24 (DN 100 to DN 600), requiring up to 4 inches (100 mm) of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36 (DN 20 to DN 900), requiring clamp flexibility and up to 4 inches (100 mm) of insulation.
 - 4. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8 (DN 15 to DN 200).
 - 5. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30 (DN 15 to DN 750).
 - 6. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36 (DN 100 to DN 900), with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
 - 7. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36 (DN 100 to DN 900), with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.

- 8. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30 (DN 25 to DN 750), from two rods if longitudinal movement caused by expansion and contraction might occur
- 9. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 (DN 50 to DN 1050) if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24 (DN 24 to DN 600).
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 (DN 20 to DN 600) if longer ends are required for riser clamps.
- L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches (150 mm) for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F (49 to 232 deg C) piping installations.
- M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb (340 kg).
 - b. Medium (MSS Type 32): 1500 lb (680 kg).
 - c. Heavy (MSS Type 33): 3000 lb (1360 kg).
 - 8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 - 9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

- 1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches (32 mm).
- 2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
- 3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
- P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- Q. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

End of Section 230529

SECTION 230553

IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.
 - 4. Duct labels.

1.2 ACTION SUBMITTAL

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Metal Valve Tags:
 - 1. Material and Thickness: Brass, 0.032-inch (0.8-mm) minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Minimum Tag Size: 1-1/2 round.
 - 3. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 4. Fasteners: Brass wire bead chain.
- B. Plastic Labels for Equipment:
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch (1.6 mm) thick, and having predrilled holes for attachment hardware.
 - 2. Letter Color: Black.
 - 3. Background Color: White.
 - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).
 - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
 - 6. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

2.2 WARNING SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch (1.6 mm) thick, and having predrilled holes for attachment hardware.
- B. Letter Color: Yellow.
- C. Background Color: Red.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
- F. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel rivets or self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches (38 mm) high.

2.4 PIPE MARKERS

- A. Underground Pipe Marker Tape: Bright colored plastic ribbon tape, minimum 6 inches wide by 4 mil thick, continuously imprinted to indicate piping service, manufactured for direct burial service.
- B. Underground Metallic Detection Tape: Bright colored plastic ribbon tape, minimum 6 inches wide by 4 mil thick, metallic film bonded to tape, continuously imprinted to indicate piping service, manufactured for direct burial service.

2.5 UTILITY MARKERS

- A. Cast Aluminum, 4x7 inch top with integrally cast name of piping system; integrally cast spike, minimum 10 inches long. As manufactured by Lake Shore Markers, Erie PA; or approved equal.
- B. Heading: "CAUTION"; In yellow letters on black background.

2.6 DUCT LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch (1.6 mm) thick, and having predrilled holes for attachment hardware.

- B. Letter Color: Black.
- C. Background Color: White.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
- F. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel rivets or self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches (38 mm) high.

PART 3 - EXECUTION

3.1 PREPARATION

A. Mechanical Contractor shall clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants prior to identification marking placement.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Piping Color-Coding: ASME/ANSI A13.1 Marker Color Chart.
- B. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet (15 m) along each run. Reduce intervals to 25 feet (7.6 m) in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- C. Pipe Label Color Schedule:
 - 1. Chilled-Water Piping:

- a. Background Color: Green.
- b. Letter Color: White.
- 2. Heating Water Piping:
 - a. Background Color: Green.
 - b. Letter Color: White.
- 3. Condenser-Water Piping:
 - a. Background Color: Green.
 - b. Letter Color: White.
- 4. Heat Pump Piping:
 - a. Background Color: Green.
 - b. Letter Color: White.
- 5. Refrigerant Piping:
 - a. Background Color: Green.
 - b. Letter Color: White.
- 6. Low-Pressure Steam Piping:
 - a. Background Color: Green.
 - b. Letter Color: White.
- 7. High-Pressure Steam Piping:
 - a. Background Color: Green.
 - b. Letter Color: White.
- 8. Steam Condensate Piping:
 - a. Background Color: Green.
 - b. Letter Color: White.

3.4 DUCT LABEL INSTALLATION

- A. Install self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:
 - 1. Blue: For cold-air supply ducts.
 - 2. Yellow: For hot-air supply ducts.
 - 3. Green: For exhaust-, outside-, relief-, return-, and mixed-air ducts.
 - 4. ASME A13.1 Colors and Designs: For hazardous material exhaust.
- B. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 50 feet (15 m) in each space where ducts are exposed or concealed by removable ceiling system.

End of Section 230553

SECTION 230593

TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Balancing Air Systems:
 - a. Constant-volume air systems.
 - b. Variable-air-volume systems.
 - 2. Balancing Hydronic Piping Systems:
 - a. Constant-flow hydronic systems.
 - b. Variable-flow hydronic systems.

1.2 **DEFINITIONS**

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An entity engaged to perform TAB Work.

1.3 ACTION SUBMITTALS

- A. LEED Submittals:
 - 1. Air-Balance Report for Prerequisite IEQ 1: Documentation of work performed for ASHRAE 62.1, Section 7.2.2 "Air Balancing."
 - 2. TAB Report for Prerequisite EA 2: Documentation of work performed for ASHRAE/IESNA 90.1, Section 6.7.2.3 "System Balancing."

1.4 INFORMATIONAL SUBMITTALS

- A. Strategies and Procedures Plan: Within 30 days of Contractor's Notice to Proceed, submit TAB strategies and step-by-step procedures as specified in "Preparation" Article.
- B. Certified TAB reports.

1.5 QUALITY ASSURANCE

- A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC or NEBB.
 - 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC or NEBB.
 - 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC pr NEBB as a TAB technician.
- B. Certify TAB field data reports and perform the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.

- C. TAB Report Forms: Use standard TAB contractor's forms approved by Architect.
- D. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."
- E. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing."
- F. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 "System Balancing."

PART 2 - PRODUCTS (Not Applicable)

2.1 TEST AND BALANCE CONTRACTORS

- A. Subject to compliance with requirements, provide services for one of the Independent Test and Balance Contractors:
 - 1. Quality Test and Balance Wichita, Kansas (316) 796-0030
 - 2. Allied Laboratories Wichita, Kansas
 - 3. Energy Management and Control Corporation Topeka, Kansas

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
- B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
- F. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.
- K. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.
- L. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.
- M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- N. Examine system pumps to ensure absence of entrained air in the suction piping.
- O. Examine operating safety interlocks and controls on HVAC equipment.
- P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system-readiness checks and prepare reports. Verify the following:
 - 1. Permanent electrical-power wiring is complete.
 - 2. Hydronic systems are filled, clean, and free of air.
 - 3. Automatic temperature-control systems are operational.
 - 4. Equipment and duct access doors are securely closed.
 - 5. Balance, smoke, and fire dampers are open.
 - 6. Isolating and balancing valves are open and control valves are operational.
 - 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 - 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and in this Section.
 - 1. Comply with requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing."
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - 2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," Section 230716 "HVAC Equipment Insulation," Section 230719 "HVAC Piping Insulation."

- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended A. testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- Prepare schematic diagrams of systems' "as-built" duct layouts. В.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- Determine the best locations in main and branch ducts for accurate duct-airflow measurements. D.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling-unit components.
- L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan A. manufacturer.
 - 1. Measure total airflow.
 - Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
 - 2. Measure fan static pressures as follows to determine actual static pressure:
 - Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 - Measure static pressure directly at the fan outlet or through the flexible connection. b.
 - Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, c. upstream from the flexible connection, and downstream from duct restrictions.
 - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
 - 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - Report the cleanliness status of filters and the time static pressures are measured.
 - 4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.

- 5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
- 6. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
- 7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure airflow of submain and branch ducts.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 - 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
 - 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure air outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.
- D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
 - 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

- A. Compensating for Diversity: When the total airflow of all terminal units is more than the indicated airflow of the fan, place a selected number of terminal units at a minimum set-point airflow with the remainder at maximum airflow condition until the total airflow of the terminal units equals the indicated airflow of the fan. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.
- B. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 - 1. Set outdoor-air dampers at minimum, and set return and exhaust-air dampers at a position that simulates full-cooling load.
 - 2. Select the terminal unit that is most critical to the supply-fan airflow and static pressure. Measure static pressure. Adjust system static pressure so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.

- 3. Measure total system airflow. Adjust to within indicated airflow.
- 4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use terminal-unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
- 5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.
 - a. If air outlets are out of balance at minimum airflow, report the condition but leave outlets balanced for maximum airflow.
- 6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 - a. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.
- 7. Measure static pressure at the most critical terminal unit and adjust the static-pressure controller at the main supply-air sensing station to ensure that adequate static pressure is maintained at the most critical unit.
- 8. Record final fan-performance data.
- C. Pressure-Dependent, Variable-Air-Volume Systems without Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 - 1. Balance variable-air-volume systems the same as described for constant-volume air systems.
 - 2. Set terminal units and supply fan at full-airflow condition.
 - 3. Adjust inlet dampers of each terminal unit to indicated airflow and verify operation of the static-pressure controller. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
 - 4. Readjust fan airflow for final maximum readings.
 - 5. Measure operating static pressure at the sensor that controls the supply fan if one is installed, and verify operation of the static-pressure controller.
 - 6. Set supply fan at minimum airflow if minimum airflow is indicated. Measure static pressure to verify that it is being maintained by the controller.
 - 7. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.
 - a. If air outlets are out of balance at minimum airflow, report the condition but leave the outlets balanced for maximum airflow.
 - 8. Measure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 - a. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.
- D. Pressure-Dependent, Variable-Air-Volume Systems with Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 - 1. Set system at maximum indicated airflow by setting the required number of terminal units at minimum airflow. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.

- 2. Adjust supply fan to maximum indicated airflow with the variable-airflow controller set at maximum airflow.
- 3. Set terminal units at full-airflow condition.
- 4. Adjust terminal units starting at the supply-fan end of the system and continuing progressively to the end of the system. Adjust inlet dampers of each terminal unit to indicated airflow. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
- 5. Adjust terminal units for minimum airflow.
- 6. Measure static pressure at the sensor.
- 7. Measure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.

3.7 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

- A. Prepare test reports with pertinent design data, and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against the approved pump flow rate. Correct variations that exceed plus or minus 5 percent.
- B. Prepare schematic diagrams of systems' "as-built" piping layouts.
- C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 - 1. Open all manual valves for maximum flow.
 - 2. Check liquid level in expansion tank.
 - 3. Check makeup water-station pressure gage for adequate pressure for highest vent.
 - 4. Check flow-control valves for specified sequence of operation, and set at indicated flow.
 - 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open.
 - 6. Set system controls so automatic valves are wide open to heat exchangers.
 - 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.
 - 8. Check air vents for a forceful liquid flow exiting from vents when manually operated.

3.8 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

- A. Measure water flow at pumps. Use the following procedures except for positive-displacement pumps:
 - 1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 - a. If impeller sizes must be adjusted to achieve pump performance, obtain approval from Architect and comply with requirements in Section 232123 "Hydronic Pumps."
 - 2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.
 - a. Monitor motor performance during procedures and do not operate motors in overload conditions.
 - 3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with

nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.

- 4. Report flow rates that are not within plus or minus 10 percent of design.
- B. Measure flow at all automatic flow control valves to verify that valves are functioning as designed.
- C. Measure flow at all pressure-independent characterized control valves, with valves in fully open position, to verify that valves are functioning as designed.
- D. Set calibrated balancing valves, if installed, at calculated presettings.
- E. Measure flow at all stations and adjust, where necessary, to obtain first balance.
 - 1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.
- F. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.
- G. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:
 - 1. Determine the balancing station with the highest percentage over indicated flow.
 - 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
 - 3. Record settings and mark balancing devices.
- H. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.
- I. Measure the differential-pressure-control-valve settings existing at the conclusion of balancing.
- J. Check settings and operation of each safety valve. Record settings.

3.9 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.

3.10 PROCEDURES FOR MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.11 PROCEDURES FOR CHILLERS

A. Balance water flow through each evaporator and condenser to within specified tolerances of indicated flow with all pumps operating. With only one chiller operating in a multiple chiller installation, do not

exceed the flow for the maximum tube velocity recommended by the chiller manufacturer. Measure and record the following data with each chiller operating at design conditions:

- 1. Evaporator-water entering and leaving temperatures, pressure drop, and water flow.
- 2. For water-cooled chillers, condenser-water entering and leaving temperatures, pressure drop, and water flow.
- 3. Evaporator and condenser refrigerant temperatures and pressures, using instruments furnished by chiller manufacturer.
- 4. Power factor if factory-installed instrumentation is furnished for measuring kilowatts.
- 5. Kilowatt input if factory-installed instrumentation is furnished for measuring kilowatts.
- 6. Capacity: Calculate in tons of cooling.
- 7. For air-cooled chillers, verify condenser-fan rotation and record fan and motor data including number of fans and entering- and leaving-air temperatures.

3.12 PROCEDURES FOR COOLING TOWERS

- A. Shut off makeup water for the duration of the test, and verify that makeup and blowdown systems are fully operational after tests and before leaving the equipment. Perform the following tests and record the results:
 - 1. Measure condenser-water flow to each cell of the cooling tower.
 - 2. Measure entering- and leaving-water temperatures.
 - 3. Measure wet- and dry-bulb temperatures of entering air.
 - 4. Measure wet- and dry-bulb temperatures of leaving air.
 - 5. Measure condenser-water flow rate recirculating through the cooling tower.
 - 6. Measure cooling-tower spray pump discharge pressure.
 - 7. Adjust water level and feed rate of makeup water system.
 - 8. Measure flow through bypass.

3.13 PROCEDURES FOR CONDENSING UNITS

- A. Verify proper rotation of fans.
- B. Measure entering- and leaving-air temperatures.
- C. Record compressor data.

3.14 PROCEDURES FOR BOILERS

- A. Hydronic Boilers: Measure and record entering- and leaving-water temperatures and water flow.
- B. Steam Boilers: Measure and record entering-water temperature and flow and leaving-steam pressure, temperature, and flow.

3.15 PROCEDURES FOR HEAT-TRANSFER COILS

- A. Measure, adjust, and record the following data for each water coil:
 - 1. Entering- and leaving-water temperature.
 - 2. Water flow rate.
 - 3. Water pressure drop.
 - 4. Dry-bulb temperature of entering and leaving air.
 - 5. Wet-bulb temperature of entering and leaving air for cooling coils.
 - 6. Airflow.
 - 7. Air pressure drop.
- B. Measure, adjust, and record the following data for each electric heating coil:
 - 1. Nameplate data.

- 2. Airflow.
- 3. Entering- and leaving-air temperature at full load.
- 4. Voltage and amperage input of each phase at full load and at each incremental stage.
- 5. Calculated kilowatt at full load.
- 6. Fuse or circuit-breaker rating for overload protection.
- C. Measure, adjust, and record the following data for each steam coil:
 - 1. Dry-bulb temperature of entering and leaving air.
 - 2. Airflow.
 - 3. Air pressure drop.
 - 4. Inlet steam pressure.
- D. Measure, adjust, and record the following data for each refrigerant coil:
 - 1. Dry-bulb temperature of entering and leaving air.
 - 2. Wet-bulb temperature of entering and leaving air.
 - 3. Airflow.
 - 4. Air pressure drop.
 - 5. Refrigerant suction pressure and temperature.

3.16 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

- A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.
 - 1. Measure and record the operating speed, airflow, and static pressure of each fan.
 - 2. Measure motor voltage and amperage. Compare the values to motor nameplate information.
 - 3. Check the refrigerant charge.
 - 4. Check the condition of filters.
 - 5. Check the condition of coils.
 - 6. Check the operation of the drain pan and condensate-drain trap.
 - 7. Check bearings and other lubricated parts for proper lubrication.
 - 8. Report on the operating condition of the equipment and the results of the measurements taken. Report deficiencies.
- B. Before performing testing and balancing of existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished. Verify the following:
 - 1. New filters are installed.
 - 2. Coils are clean and fins combed.
 - 3. Drain pans are clean.
 - 4. Fans are clean.
 - 5. Bearings and other parts are properly lubricated.
 - 6. Deficiencies noted in the preconstruction report are corrected.
- C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.
 - 1. Compare the indicated airflow of the renovated work to the measured fan airflows, and determine the new fan speed and the face velocity of filters and coils.
 - 2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer.
 - 3. If calculations increase or decrease the air flow rates and water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated rates. If increase or decrease is 5 percent or less, equipment adjustments are not required.

4. Balance each air outlet.

3.17 TOLERANCES

- A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 - 2. Air Outlets and Inlets: Plus or minus 10 percent.
 - 3. Heating-Water Flow Rate: Plus or minus 5 percent.
 - 4. Cooling-Water Flow Rate: Plus or minus 5 percent.

3.18 REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: Prepare weekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.19 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Pump curves.
 - 2. Fan curves.
 - 3. Manufacturers' test data.
 - 4. Field test reports prepared by system and equipment installers.
 - 5. Other information relative to equipment performance; do not include Shop Drawings and product data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB contractor.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.

- b. Notable characteristics of systems.
- c. Description of system operation sequence if it varies from the Contract Documents.
- 12. Nomenclature sheets for each item of equipment.
- 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
- 14. Notes to explain why certain final data in the body of reports vary from indicated values.
- 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.
 - h. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates.
 - 3. Duct, outlet, and inlet sizes.
 - 4. Pipe and valve sizes and locations.
 - 5. Terminal units.
 - 6. Balancing stations.
 - 7. Position of balancing devices.

3.20 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

End of Section 230593

SECTION 230713

DUCT INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes insulating the following duct services:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.
 - 4. Indoor, exposed return located in unconditioned space.
 - 5. Indoor, concealed, Type I, commercial, kitchen hood exhaust.
 - 6. Indoor, exposed, Type I, commercial, kitchen hood exhaust.
 - 7. Indoor, concealed oven and warewash exhaust.
 - 8. Indoor, exposed oven and warewash exhaust.
 - 9. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 - 10. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
 - 11. Outdoor, exposed supply and return.

B. Related Section:

1. Section 233113 "Metal Ducts" for duct liner.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. LEED Submittals:
 - 1. Product Data for Credit IEQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content.
 - 2. Laboratory Test Reports for Credit IEQ 4: For adhesives and sealants, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Shop Drawings: Include completed plates from the National Commercial & Industrial Insulation Standards Manual (Volume 6 or later edition) for the following applications:
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 - 3. Detail application of field-applied jackets.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 **QUALITY ASSURANCE**

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction.

Duct Insulation Page 1 of 16 Section 230713

Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

- 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
- 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. See metal duct specification for duct liner requirements.
- B. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule," and "Aboveground, Outdoor Duct and Plenum Insulation Schedule" articles for where insulating materials shall be applied.
- C. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- D. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- E. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- F. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>CertainTeed Corp.</u>; SoftTouch Duct Wrap.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Friendly Feel Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.
 - e. Owens Corning; SOFTR All-Service Duct Wrap.
- H. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; Commercial Board.
 - b. Fibrex Insulations Inc.; FBX.
 - c. Johns Manville; 800 Series Spin-Glas.
 - d. Knauf Insulation; Insulation Board.
 - e. Manson Insulation Inc.; AK Board.
 - f. Owens Corning; Fiberglas 700 Series.

2.2 FIRE-RATED INSULATION SYSTEMS

A. 1 and 2 Hour; zero clearance Applied Fire Protection for Commercial Kitchen Grease Ducts when tested in accordance with ASTM E 2336 – Passes all 5 Acceptance Criteria in Sections 16.1 to 16.5 –

Duct Insulation Page 2 of 16 Section 230713

Reference ICC-ES Building Code Report ESR 2213 or ESR 2832, also reference UL Listing HNKT G-18.

- B. 1 and 2 Hour Applied Fire Protection when tested in accordance with UL 1978; Compliant per Intertek Listing TC/BI 120-01.
- C. 1 and 2 Hour F- and T-Rated Through Penetration Firestop when tested in accordance with ASTM E 814 (UL 1479): UL Through Penetration listings; C-AJ-1562; C-AJ-7004; C-AJ-7012; C-AJ-7014; C-AJ-7019; C-AJ-7021; C-AJ-7047; C-AJ-7095; C-AJ-7098; C-AJ-7119; F-A-1093; F-A-1094; F-A-3048; F-C-7036; FC-7037; W-L-7041; W-L-7099; W-L-7121; W-L-7145; W-J-7086.
- D. 1 and 2 Hour Applied Fire Protection for Ventilation Air Duct when tested in accordance with ISO 6944-1985 Reference UL Listings HNLJ V19; HNLJ V29;
- E. Manufacturers: Subject to compliance with requirements, provide one of the following:
 - 1. <u>Products:</u>
 - a. <u>CertainTeed Corp.; FlameChek.</u>
 - b. Nelson Fire Stop Products; Nelson FSB Flameshield Blanket.
 - c. Thermal Ceramics; FireMaster XL.
 - d. 3M; Fire Barrier Wrap Products.
 - e. <u>Unifrax Corporation; FyreWrap</u>.
- F. Access Doors (Fire Rated): Thermal Ceramics FastDoor XL (or equal) for duct access to Type 1 commercial kitchen hood exhaust ductwork: Install access openings at each change in direction and at intervals as required by code. Insulation cover system shall be tested and listed by UL (HNKT G18) to provide zero clearance to combustible construction and [1] [2]-hour fire rating per ASTM E 2336. Duct access cover panel shall be tested and listed by UL (YYXS.MH47995) with integral neoprene gasket to provide liquid tight seal and shall have a high temperature gasket and signage "Access Door Do not Obstruct" compliant to code and NFPA 96. Installation shall be performed by an experienced contractor per manufacturer instructions and applicable UL Listings. Sheet metal and insulation contractors shall coordinate installation of the FastDoor XL and the duct enclosure system.
- G. Refer to Specification Section 23 51 00 Breechings, Chimneys and stacks for pre-engineered Listed grease duct systems. Listed grease duct systems shall be used in areas where duct is exposed to view.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company;</u> CP-127.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.</u>
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

Duct Insulation Page 3 of 16 Section 230713

- C. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company;</u> CP-82.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.</u>
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- D. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. Dow Corning Corporation; 739, Dow Silicone.
 - b. Johns Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. Speedline Corporation; Polyco VP Adhesive.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.</u>
 - b. <u>Vimasco Corporation; 749</u>.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:

Duct Insulation Page 4 of 16 Section 230713

- a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company;</u> CP-10.
- b. <u>Eagle Bridges Marathon Industries; 550.</u>
- c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 46-50.</u>
- d. Mon-Eco Industries, Inc.; 55-50.
- e. <u>Vimasco Corporation; WC-1/WC-5.</u>
- 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms (1.2 metric perms) at 0.0625-inch (1.6-mm) dry film thickness.
- 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
- 4. Solids Content: 60 percent by volume and 66 percent by weight.
- 5. Color: White.

2.5 SEALANTS

- A. FSK and Metal Jacket Flashing Sealants:
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company;</u> CP-76.
 - b. Eagle Bridges Marathon Industries; 405.
 - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.</u>
 - d. Mon-Eco Industries, Inc.; 44-05.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: Aluminum.
 - 6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company;</u> CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: White.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
 - 4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
 - 5. Vinyl Jacket: White vinyl with a permeance of 1.3 perms (0.86 metric perm) when tested according to ASTM E 96/E 96M, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

- A. Woven Polyester Fabric: Approximately 1 oz./sq. yd. (34 g/sq. m) with a thread count of 10 strands by 10 strands/sq. in. (4 strands by 4 strands/sq. mm), in a Leno weave, for ducts.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company;</u> Mast-A-Fab.
 - b. Vimasco Corporation; Elastafab 894.

2.8 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
- C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Johns Manville; Zeston.
 - b. P.I.C. Plastics, Inc.; FG Series.
 - c. Proto Corporation; LoSmoke.
 - d. Speedline Corporation; SmokeSafe.
 - 2. Adhesive: As recommended by jacket material manufacturer.
 - 3. Color: White.
- D. Aluminum Jacket: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company;</u> Metal Jacketing Systems.
 - b. <u>ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.</u>
 - c. RPR Products, Inc.; Insul-Mate.
 - 2. Sheet and roll stock ready for shop or field sizing.
 - 3. Finish and thickness are indicated in field-applied jacket schedules.

Duct Insulation Page 6 of 16 Section 230713

- 4. Moisture Barrier for Indoor Applications: 1-mil- (0.025-mm-) thick, heat-bonded polyethylene and kraft paper.
- 5. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.
- E. Self-Adhesive Outdoor Jacket: 60-mil- (1.5-mm-) thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with white or stucco-embossed aluminum-foil facing.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. Polyguard Products, Inc.; Alumaguard 60.

2.9 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 428 AWF ASJ.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - c. Compac Corporation; 104 and 105.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches (75 mm).
 - 3. Thickness: 11.5 mils (0.29 mm).
 - 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 491 AWF FSK.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - c. Compac Corporation; 110 and 111.
 - d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches (75 mm).
 - 3. Thickness: 6.5 mils (0.16 mm).
 - 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 370 White PVC tape.
 - b. Compac Corporation; 130.
 - c. Venture Tape; 1506 CW NS.

Duct Insulation Page 7 of 16 Section 230713

- 2. Width: 2 inches (50 mm).
- 3. Thickness: 6 mils (0.15 mm).
- 4. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.
- 5. Elongation: 500 percent.
- 6. Tensile Strength: 18 lbf/inch (3.3 N/mm) in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 488 AWF.
 - b. <u>Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.</u>
 - c. <u>Compac Corporation; 120</u>.
 - d. Venture Tape; 3520 CW.
 - 2. Width: 2 inches (50 mm).
 - 3. Thickness: 3.7 mils (0.093 mm).
 - 4. Adhesion: 100 ounces force/inch (1.1 N/mm) in width.
 - 5. Elongation: 5 percent.
 - 6. Tensile Strength: 34 lbf/inch (6.2 N/mm) in width.

2.10 SECUREMENTS

- A. Aluminum Bands: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick3/4 inch (19 mm) wide with wing seal or closed seal.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>ITW Insulation Systems; Gerrard Strapping and Seals.</u>
 - b. <u>RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.</u>
- B. Insulation Pins and Hangers:
 - 1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; Tactoo Perforated Base Insul-Hangers.
 - 2) GEMCO; Perforated Base.
 - 3) Midwest Fasteners, Inc.; Spindle.
 - b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
 - c. Spindle: Copper or zinc-coated, low-carbon steel, Aluminum, or Stainless steel, fully annealed, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
 - 2. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) GEMCO; Nylon Hangers.

Duct Insulation Page 8 of 16 Section 230713

- 2) Midwest Fasteners, Inc.; Nylon Insulation Hangers.
- b. Baseplate: Perforated, nylon sheet, 0.030 inch (0.76 mm) thick by 1-1/2 inches (38 mm) in diameter.
- c. Spindle: Nylon, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches (63 mm).
- d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 3. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; Tactoo Self-Adhering Insul-Hangers.
 - 2) <u>GEMCO; Peel & Press</u>.
 - 3) Midwest Fasteners, Inc.; Self Stick.
 - b. Baseplate: Galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
 - c. Spindle: Copper or zinc-coated, low-carbon steel, Aluminum, or Stainless steel, fully annealed, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive-backed base with a peel-off protective cover.
- 4. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick, galvanized-steel aluminum stainless-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; RC-150.
 - 2) GEMCO; R-150.
 - 3) Midwest Fasteners, Inc.; WA-150.
 - 4) Nelson Stud Welding; Speed Clips.
 - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- 5. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
 - a. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - 1) GEMCO.
 - 2) Midwest Fasteners, Inc.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.
- D. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:

Duct Insulation Page 9 of 16 Section 230713

a. C & F Wire.

2.11 CORNER ANGLES

- A. PVC Corner Angles: 30 mils (0.8 mm) thick, minimum 1 by 1 inch (25 by 25 mm), PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.
- B. Aluminum Corner Angles: 0.040 inch (1.0 mm) thick, minimum 1 by 1 inch (25 by 25 mm), aluminum according to ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14.

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Installation shall conform to the National Commercial & Industrial Standards Manual published by the Midwest Insulation Contractors Association (MICA). www.micainsulation.org
- B. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
- C. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
- D. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- E. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- F. Install multiple layers of insulation with longitudinal and end seams staggered.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.

Duct Insulation Page 10 of 16 Section 230713

- 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches (100 mm) o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation. Do not compress more than 25 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.3 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Roofing Contractor shall seal penetrations with flashing sealant. Duct penetrations must be completed and insulated before roof is sealed.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
- B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. General Contractor shall seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
- C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches (50 mm).
- E. Insulation Installation at Floor Penetrations:
 - 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches (50 mm).

3.4 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with insulation pins.

Duct Insulation Page 11 of 16 Section 230713

- 1. Install capacitor-discharge-weld pins and speed washers, or stick pins with speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
 - b. On duct sides with dimensions larger than 18 inches (450 mm), place pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 2. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches (75 mm).
- 3. Overlap unfaced blankets a minimum of 2 inches (50 mm) on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches (450 mm) o.c.
- 4. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 5. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-(150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.
- B. Board Insulation Installation on Ducts and Plenums: Secure with insulation pins.
 - 1. Install capacitor-discharge-weld pins and speed washers, or stick pins with speed washers, or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
 - b. On duct sides with dimensions larger than 18 inches (450 mm), space pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.

- e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 2. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches (75 mm).
- 3. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 4. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-(150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.

3.5 FIELD-APPLIED JACKET INSTALLATION

- A. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch (38-mm) laps at longitudinal seams and 3-inch- (75-mm-) wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- B. Where PVC jackets are indicated, install with 1-inch (25-mm) overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- C. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

3.6 FIRE-RATED INSULATION SYSTEM INSTALLATION

- A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.
- B. Insulate duct access panels and doors to achieve same fire rating as duct.
- C. Install firestopping at penetrations through fire-rated assemblies.

Duct Insulation Page 13 of 16 Section 230713

D. Grease wrap installation:

- 1. Install 2 layers of FireMaster FastWrap XL or equal for a 1 and 2 hour commercial kitchen grease duct applications per ASTM E 2336.
- 2. General Installation Instructions for Double Layer Installations: The inside layer of FireMaster FastWrap XL blankets are cut to a length that will fit around the duct and meet with a tight butt joint. Adjacent blankets on the inside layer are tightly butted against each other. The outside layer is cut to a length that will fit around the duct and overlap itself no less than 3 inches (152 mm). Adjacent blankets on the outside layer overlap each other a minimum of 3", or they can be fitted together with a tight butt joint and covered with a 6 inches (305 mm) wide collar centered over the butt joint. Cut edges of the blanket shall be taped with aluminum foil tape to prevent exposed edges of the insulation from wicking of condensation moisture in air ventilation ducts or grease from a leaking grease duct joint. During installation the blankets are temporarily held in place with filament tape until the wrap is mechanically attached with steel bands or steel insulation pins.
- 3. Mechanical Fastening of Enclosure Material to Ductwork: Banding Carbon steel or stainless steel banding is used to hold the outer layer of the blanket enclosure in place. Banding is minimum 1/2 inch (12.7 mm) wide, and is placed around the entire perimeter of the duct on maximum 10-1/2 inches (267 mm) centers and 1-1/2 inches (38 mm) from each blanket or collar edge.
- 4. Pinning To prevent blanket sag on duct spans 24 inch wide (610 mm) or larger, minimum 12-gauge steel insulation pins are welded to the duct along bottom horizontal and outside vertical runs in columns spaced 12 inches (305 mm) apart, 6 to 12 inch (152 to 305 mm) from each edge, and on 10-1/2 inches (267 mm) centers. Pins are also required 1 inch (25 mm) from the end of a duct and 1 inch (25 mm) from any edge near a 90° bend spaced 6 inch (152 mm) apart. Pins are locked in place with 1-1/2 inch (38 mm) diameter or 1-1/2 inch (38 mm) square galvanized steel speed clips or cup head pins. Pins are turned down or the excess cut off to eliminate sharp edges.
- 5. Grease Duct Access Door Installation: Provide UL Listed liquid tight Thermal Ceramics FastDoor XL access doors where required by code. Sheet metal and insulation contractors shall coordinate installation of FastDoor XL.

3.7 FINISHES

- A. Insulation with ASJ or Other Paintable Jacket Material: Painting Contractor shall paint jacket with paint system identified below where required by architect or engineer:
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- C. Do not field paint aluminum or stainless-steel jackets.

3.8 FIELD OUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:

- 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location for each duct system defined in the "Duct Insulation Schedule, General" Article.
- C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.9 DUCT INSULATION SCHEDULE, GENERAL

(All supply and return ductwork shall have duct liner unless specified to have no duct liner. See Metal Ducts Section 23 31 13 for requirements.)

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.
 - 4. Indoor, exposed return located in unconditioned space.
 - 5. Indoor, concealed, Type I, commercial, kitchen hood exhaust.
 - 6. Indoor, exposed, Type I, commercial, kitchen hood exhaust.
 - 7. Indoor, concealed oven and warewash exhaust.
 - 8. Indoor, exposed oven and warewash exhaust.
 - 9. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 - 10. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
 - 11. Outdoor, exposed supply and return.
- B. Items Not Insulated:
 - 1. Fibrous-glass ducts.
 - 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 - 3. Factory-insulated flexible ducts.
 - 4. Factory-insulated plenums and casings.
 - 5. Vibration-control devices.
 - 6. Factory-insulated access panels and doors.

3.10 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

(All supply and return ductwork shall have duct liner unless specified to have no duct liner. See Metal Ducts Section 23 31 13 for requirements.)

- A. Concealed, Supply-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- B. Concealed, Return-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- C. Concealed, Outdoor-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- D. Concealed, Exhaust-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density. Apply insulation from fan discharge at exterior to 20'-0" along duct towards exhaust discharge.
- E. Concealed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated blanket or board; thickness as required to achieve 2-hour fire rating. Two layers, 1-1/2 inches each per manufacturers installation guidelines.

Duct Insulation Page 15 of 16 Section 230713

- F. Exposed, Outdoor-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- G. Exposed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated blanket or board; thickness as required to achieve 2-hour fire rating. Two layers, 1-1/2 inches each per manufacturers installation guidelines.
- H. Exposed ductwork in mechanical room shall be insulated with 2 inch thick 3-lb/cu. ft. ductboard with FSK.
- I. Exposed round duct in mechanical room shall be insulated with 2.5-lb/cu.ft. microflex with FSK.

3.11 ABOVEGROUND, OUTDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Insulation materials and thicknesses are identified below. If more than one material is listed for a duct system, selection from materials listed is Contractor's option. Exterior ducts shall have aluminum jacket.
- B. Supply-Air Duct and Plenum Insulation: Mineral-fiber board, 2 inches (50 mmthick and 3-lb/cu. ft. (48-kg/cu. m) nominal density.
- C. Return-Air Duct and Plenum Insulation: Mineral-fiber board, 2 inches (50 mm) thick 3-lb/cu. ft. (48-kg/cu. m) nominal density.
- D. Outdoor-Air Duct and Plenum Insulation: Mineral-fiber board, 2 inches (50 mm) thick and 3-lb/cu. ft. (48-kg/cu. m) nominal density.

3.12 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket (where noted on plans).
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Ducts and Plenums, Exposed, up to 48 Inches (1200 mm) in Diameter or with Flat Surfaces up to 72 Inches (1800 mm):
 - 1. Aluminum, Stucco Embossed: 0.020 inch (0.41 mm) thick.
- D. Ducts and Plenums, Exposed, Larger Than 48 Inches (1200 mm) in Diameter or with Flat Surfaces Larger Than 72 Inches (1800 mm):
 - 1. Aluminum, Stucco Embossed with 0.032 inch (0.81 mm) thick.

End of Section 230713

SECTION 230719

HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes insulating the following HVAC piping systems:
 - 1. Chilled-water and brine piping.
 - 2. Heating hot-water piping.
 - 3. Refrigerant suction and hot-gas piping.
 - 4. Dual-service heating and cooling piping.
 - 5. Condensate Drain Piping.
 - 6. Heat Pump Loop Piping.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. LEED Submittals:
 - 1. Product Data for Credit IEQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content.
 - 2. Laboratory Test Reports for Credit IEQ 4: For adhesives and sealants, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Shop Drawings: Include completed Plates from the National Commercial and Industrial Insulations Standards Manual (Volume 6 or later) for the following applications:
 - 1. Application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 3. Application of field-applied jackets.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 OUALITY ASSURANCE

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- B. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- E. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Pittsburgh Corning Corporation</u>; Foamglas.
 - 2. Block Insulation: ASTM C 552, Type I.
 - 3. Special-Shaped Insulation: ASTM C 552, Type III.
 - 4. Board Insulation: ASTM C 552, Type IV.
 - 5. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 - 6. Preformed Pipe Insulation with Factory-Applied ASJ-SSL: Comply with ASTM C 552, Type II, Class 2.
 - 7. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
- F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA, Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. <u>K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS</u>.
- G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 1290, Type I.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>CertainTeed Corp.</u>; SoftTouch Duct Wrap.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Friendly Feel Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.
 - e. Owens Corning; SOFTR All-Service Duct Wrap.
- H. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Johns Manville; Micro-Lok.
 - b. Knauf Insulation; 1000-Degree Pipe Insulation.
 - c. Owens Corning; Fiberglas Pipe Insulation.
 - 2. Type I, 850 deg F (454 deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F (minus 73 to plus 93 deg C).
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 81-</u>84.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA, Inc.; Aeroseal.
 - b. Armacell LLC; Armaflex 520 Adhesive.
 - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-75.</u>
 - d. K-Flex USA; R-373 Contact Adhesive.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company;</u> CP-127.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.</u>
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

- E. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company;</u> CP-82.
 - b. <u>Eagle Bridges Marathon Industries</u>; 225.
 - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.</u>
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- F. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Dow Corning Corporation</u>; 739, <u>Dow Silicone</u>.
 - b. <u>Johns Manville</u>; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. Speedline Corporation; Polyco VP Adhesive.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.</u>
 - b. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:

- a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company;</u> CP-10.
- b. Eagle Bridges Marathon Industries; 550.
- c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 46-50.</u>
- d. Mon-Eco Industries, Inc.; 55-50.
- e. <u>Vimasco Corporation; WC-1/WC-5</u>.
- 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms (1.2 metric perms) at 0.0625-inch (1.6-mm) dry film thickness.
- 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
- 4. Solids Content: 60 percent by volume and 66 percent by weight.
- 5. Color: White.

2.5 SEALANTS

A. Joint Sealants:

- 1. <u>Joint Sealants for Cellular-Glass Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company;</u> CP-76.
 - b. <u>Eagle Bridges Marathon Industries</u>; 405.
 - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-45.</u>
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Pittsburgh Corning Corporation; Pittseal 444.
- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Permanently flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 100 to plus 300 deg F (Minus 73 to plus 149 deg C).
- 5. Color: White or gray.
- 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. FSK and Metal Jacket Flashing Sealants:

- 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company;</u> CP-76.
 - b. Eagle Bridges Marathon Industries; 405.
 - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.</u>
 - d. Mon-Eco Industries, Inc.; 44-05.
- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Fire- and water-resistant, flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
- 5. Color: Aluminum.
- 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

- 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company;</u> <u>CP-76.</u>
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: White.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
 - 4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
 - 5. PVDC Jacket for Indoor Applications: 4-mil- (0.10-mm-) thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perm (0.013 metric perm) when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84.
 - a. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - 1) <u>Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560</u> Vapor Retarder Film.
 - 6. PVDC Jacket for Outdoor Applications: 6-mil- (0.15-mm-) thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perm (0.007 metric perm) when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 25 when tested according to ASTM E 84.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) <u>Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.</u>
 - 7. PVDC-SSL Jacket: PVDC jacket with a self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip.
 - a. <u>Products</u>: Subject to compliance with requirements, provide one of the following:

- 1) <u>Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.</u>
- 8. Vinyl Jacket: White vinyl with a permeance of 1.3 perms (0.86 metric perms) when tested according to ASTM E 96/E 96M, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

- A. Woven Polyester Fabric: Approximately 1 oz./sq. yd. (34 g/sq. m) with a thread count of 10 strands by 10 strands/sq. in. (4 strands by 4 strands/sq. mm), in a Leno weave, for pipe.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company;</u> Mast-A-Fab.
 - b. Vimasco Corporation; Elastafab 894.

2.8 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil face, fiberglass-reinforced scrim with kraft-paper backing.
- C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. Johns Manville; Zeston.
 - b. P.I.C. Plastics, Inc.; FG Series.
 - c. Proto Corporation; LoSmoke.
 - d. Speedline Corporation; SmokeSafe.
 - 2. Adhesive: As recommended by jacket material manufacturer.
 - 3. Color: White.
 - 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
- D. Aluminum Jacket: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Metal Jacketing Systems.</u>
 - b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 - c. RPR Products, Inc.; Insul-Mate.
 - 2. Sheet and roll stock ready for shop or field sizing or factory cut and rolled to size.
 - 3. Finish and thickness are indicated in field-applied jacket schedules.
 - 4. Moisture Barrier for Indoor Applications: 1-mil- (0.025-mm-) thick, heat-bonded polyethylene and kraft paper.
 - 5. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.

- 6. Factory-Fabricated Fitting Covers:
 - a. Same material, finish, and thickness as jacket.
 - b. Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - c. Tee covers.
 - d. Flange and union covers.
 - e. End caps.
 - f. Beveled collars.
 - g. Valve covers.
 - h. Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
- E. Self-Adhesive Outdoor Jacket: 60-mil- (1.5-mm-) thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with white stucco-embossed aluminumfoil facing.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. Polyguard Products, Inc.; Alumaguard 60.
- F. PVDC Jacket for Indoor Applications: 4-mil- (0.10-mm-) thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perms (0.013 metric perms) when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. Dow Chemical Company (The); Saran 540 Vapor Retarder Film.
- G. PVDC Jacket for Outdoor Applications: 6-mil- (0.15-mm-) thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perms (0.007 metric perms) when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 25 when tested according to ASTM E 84.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Chemical Company (The); Saran 560 Vapor Retarder Film.
- H. PVDC-SSL Jacket: PVDC jacket with a self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. <u>Dow Chemical Company (The)</u>; Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.

2.9 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 428 AWF ASJ.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - c. Compac Corporation; 104 and 105.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches (75 mm).
 - 3. Thickness: 11.5 mils (0.29 mm).

- 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
- 5. Elongation: 2 percent.
- 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
- 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 491 AWF FSK.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - c. <u>Compac Corporation; 110 and 111</u>.
 - d. <u>Venture Tape</u>; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches (75 mm).
 - 3. Thickness: 6.5 mils (0.16 mm).
 - 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 370 White PVC tape.
 - b. <u>Compac Corporation; 130</u>.
 - c. Venture Tape; 1506 CW NS.
 - 2. Width: 2 inches (50 mm).
 - 3. Thickness: 6 mils (0.15 mm).
 - 4. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.
 - 5. Elongation: 500 percent.
 - 6. Tensile Strength: 18 lbf/inch (3.3 N/mm) in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 488 AWF.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 - c. Compac Corporation; 120.
 - d. Venture Tape; 3520 CW.
 - 2. Width: 3 inches (75 mm).
 - 3. Thickness: 3.7 mils (0.093 mm).
 - 4. Adhesion: 100 ounces force/inch (1.1 N/mm) in width.
 - 5. Elongation: 5 percent.
 - 6. Tensile Strength: 34 lbf/inch (6.2 N/mm) in width.
- E. PVDC Tape for Indoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. <u>Dow Chemical Company (The)</u>; Saran 540 Vapor Retarder Tape.
 - 2. Width: 3 inches (75 mm).

- 3. Film Thickness: 4 mils (0.10 mm).
- 4. Adhesive Thickness: 1.5 mils (0.04 mm).
- 5. Elongation at Break: 145 percent.
- 6. Tensile Strength: 55 lbf/inch (10.1 N/mm) in width.
- F. PVDC Tape for Outdoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. Dow Chemical Company (The); Saran 560 Vapor Retarder Tape.
 - 2. Width: 3 inches (75 mm).
 - 3. Film Thickness: 6 mils (0.15 mm).
 - 4. Adhesive Thickness: 1.5 mils (0.04 mm).
 - 5. Elongation at Break: 145 percent.
 - 6. Tensile Strength: 55 lbf/inch (10.1 N/mm) in width.

2.10 SECUREMENTS

- A. Aluminum Bands: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 3/4 inch (19 mm) wide with wing seal or closed seal.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. ITW Insulation Systems; Gerrard Strapping and Seals.
 - b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.
- C. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, [provide products by one of the following:
 - a. C & F Wire.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Surface Preparation: General Contractor and Mechanical Contractor shall clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application. Piping shall be clean and free of debris such as fireproofing, mortar, grout, etc.
- B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Installation shall conform to the National Commercial and Industrial Insulation Standards Manual published by the Midwest Contractors Association (MICA) www.micainsulation.org
- B. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- C. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

- D. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- E. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- F. Install multiple layers of insulation with longitudinal and end seams staggered.
- G. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- H. Keep insulation materials dry during application and finishing.
- I. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- J. Install insulation with least number of joints practical.
- K. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- L. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- M. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- N. Cut insulation in a manner to avoid compressing insulation. Do not compress more than 25 percent of its nominal thickness.
- O. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- P. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, and seal patches similar to butt joints.
- Q. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.

- 4. Manholes.
- 5. Handholes.
- 6. Cleanouts.
- R. Provide high density foamglas insulation inserts at hanger locations between pipe and pipe shield. Wood blocks are not acceptable. Maintain a continuous vapor through the hangers and match jacketing of adjoining pipe insulation.

3.3 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Roofing Contractor shall seal penetrations with flashing sealant. Insulation penetrations through roof must be complete before final seal by Roofing Contractor.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. General Contractor shall seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. General Contractor shall seal penetrations through fire-rated assemblies.

3.4 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with

- insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
- 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
- Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, 4 density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
- 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
- 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
- Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. 7. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- For services not specified to receive a field-applied jacket except for flexible elastomeric and 8. polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC
- 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

3.5 INSTALLATION OF CELLULAR-GLASS INSULATION

- Insulation Installation on Straight Pipes and Tubes: A.
 - 1. Secure each layer of insulation to pipe with wire, bands or strapping tape and tighten bands without deforming insulation materials.
 - Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with 2. vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient services, secure laps with outwardclinched staples at 6 inches (150 mm) o.c.
 - 4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- В. Insulation Installation on Pipe Flanges:
 - Install preformed pipe insulation to outer diameter of pipe flange.

- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 - 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of cellular-glass insulation to valve body.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER PREFORMED PIPE INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

- 1. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- 2. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

- 1. Install preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
- 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 4. Install insulation to flanges as specified for flange insulation application.

3.8 FIELD-APPLIED JACKET INSTALLATION

- A. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch (38-mm) laps at longitudinal seams and 3-inch- (75-mm-) wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- B. Where PVC jackets are indicated, install with 1-inch (25-mm) overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- C. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

- D. Where PVDC jackets are indicated, install as follows:
 - 1. Apply three separate wraps of filament tape per insulation section to secure pipe insulation to pipe prior to installation of PVDC jacket.
 - 2. Wrap factory-presized jackets around individual pipe insulation sections with one end overlapping the previously installed sheet. Install presized jacket with an approximate overlap at butt joint of 2 inches (50 mm) over the previous section. Adhere lap seal using adhesive or SSL, and then apply 1-1/4 circumferences of appropriate PVDC tape around overlapped butt joint.
 - 3. Continuous jacket can be spiral-wrapped around a length of pipe insulation. Apply adhesive or PVDC tape at overlapped spiral edge. When electing to use adhesives, refer to manufacturer's written instructions for application of adhesives along this spiral edge to maintain a permanent bond.
 - 4. Jacket can be wrapped in cigarette fashion along length of roll for insulation systems with an outer circumference of 33-1/2 inches (850 mm) or less. The 33-1/2-inch- (850-mm-) circumference limit allows for 2-inch- (50-mm-) overlap seal. Using the length of roll allows for longer sections of jacket to be installed at one time. Use adhesive on the lap seal. Visually inspect lap seal for "fishmouthing," and use PVDC tape along lap seal to secure joint.
 - 5. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.

3.9 FINISHES

- A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of elastomeric paint insulation manufacturer's recommended protective coating.
- B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- C. Do not field paint aluminum or stainless-steel jackets.

3.10 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
- C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.11 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.12 INDOOR PIPING INSULATION SCHEDULE

- A. Chilled Water and Brine, above 40 Deg F (5 Deg C): Insulation shall be one of the following:
 - 1. Cellular Glass: 1 inch (25 mm) thick up to 6 inches in diameter, 1-1/2 inches (50 mm) thick 6 inches diameter and above.
 - 2. Mineral-Fiber, Preformed Pipe, Type I 1 inch (25 mm) thick up to 6 inches in diameter, 1-1/2 inches thick 6 inches diameter and above.
- B. Heating-Hot-Water Supply and Return, 200 Deg F (93 Deg C) and Below: Insulation shall be one of the following:
 - 1. Cellular Glass: 1-1/2 inch (38 mm) thick up to 4 inches in diameter, 2 inches (50 mm) thick 4 inches diameter and above.
 - 2. Mineral-Fiber, Preformed Pipe, Type I: 1-1/2 inch (38 mm) thick up to 4 inches in diameter, 2 inches (50 mm) thick 4 inches diameter and above.
- C. Refrigerant Suction and Hot-Gas Piping: Flexible elastomeric, 1 inch (25 mm) thick. Line set shall be 3/4" closed cell insulation with polyethylene hard shell outer jacket,. Insultaion shall be paintable, weather / ultraviolet resistant and ASTM E-84 25/50 compliant as tested per UL72 fire and smoke rating.
- D. Dual-Service Heating and Cooling, 40 to 200 Deg F (5 to 93 Deg C): Insulation shall be one of the following:
 - 1. Cellular Glass: 1-1/2 inch (38 mm) thick up to 4 inches in diameter, 2 inches (50 mm) thick 4 inches diameter and above.
 - 2. Mineral-Fiber, Preformed Pipe, Type I: 1-1/2 inch (38 mm) thick up to 4 inches in diameter, 2 inches (50 mm) thick 4 inches diameter and above.
- E. Condensate Drain Piping:
 - 1. Cellular Glass: 1 inch (25 mm) thick up to 6 inches in diameter, 1-1/2 inches (50 mm) thick 6 inches diameter and above.
 - 2. Mineral-Fiber, Preformed Pipe, Type I 1 inch (25 mm) thick up to 6 inches in diameter, 1-1/2 inches thick 6 inches diameter and above.
 - 3. Flexible Elastomeric: 1 inch (25mm) thick
- F. Heat Pump Loop Piping:
 - 1. Cellular Glass: 1 inch (25 mm) thick up to 6 inches in diameter, 1-1/2 inches (50 mm) thick 6 inches diameter and above.
 - 2. Mineral-Fiber, Preformed Pipe, Type I 1 inch (25 mm) thick up to 6 inches in diameter, 1-1/2 inches thick 6 inches diameter and above.

3.13 OUTDOOR, ABOVEGROUND EXPOSED TO WEATHER PIPING INSULATION SCHEDULE

- A. Chilled Water and Brine: Insulation shall be one of the following:
 - 1. Cellular Glass: 3 inches (75 mm) thick.
 - 2. Mineral-Fiber, Preformed Pipe Insulation, Type I: 3 inches (75 mm) thick.
- B. Heating-Hot-Water Supply and Return, 200 Deg F (93 Deg C) and Below: Insulation shall be one of the following:
 - 1. Cellular Glass: 3 inches (75 mm) thick.
 - 2. Mineral-Fiber, Preformed Pipe Insulation, Type I: 3 inches (75 mm) thick.
- C. Refrigerant Suction and Hot-Gas Piping: Insulation shall be one of the following:

HVAC Piping Insulation

Page 17 of 18

Section 230719

- 1. Flexible Elastomeric: 2 inches (50 mm) thick.
- D. Dual-Service Heating and Cooling: Insulation shall be one of the following:
 - 1. Cellular Glass: 3 inches (75 mm) thick.
 - 2. Mineral-Fiber, Preformed Pipe Insulation, Type I: 3 inches (75 mm) thick.

3.14 OUTDOOR, UNDERGROUND PIPING INSULATION SCHEDULE

A. Insulation system, for belowground piping, is specified in Section 232113.13 "Underground Hydronic Piping".

3.15 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. None.
- D. Piping, Exposed to view by general public or where noted on plans or where exposed in kitchens.
 - 1. PVC: 20 mils (0.5 mm) thick.

3.16 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. Aluminum, Stucco Embossed: 0.032 inch (0.81 mm) thick.

3.17 UNDERGROUND, FIELD-INSTALLED INSULATION JACKET

A. For underground direct-buried piping applications, install underground direct-buried jacket over insulation material.

End of Section 230719

SECTION 231123

FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 **SUMMARY**

- A. Section Includes:
 - 1. Pipes, tubes, and fittings.
 - 2. Piping specialties.
 - 3. Piping and tubing joining materials.
 - 4. Valves.
 - 5. Pressure regulators.

1.2 PERFORMANCE REQUIREMENTS

- A. Minimum Operating-Pressure Ratings:
 - 1. Piping and Valves: 100 psig (690 kPa) minimum unless otherwise indicated.
 - 2. Service Regulators: 65 psig (450 kPa) minimum unless otherwise indicated.
- B. Natural-Gas System Pressure within Buildings: 0.5 psig (3.45 kPa) or less.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 QUALITY ASSURANCE

- A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern.
 - 2. Wrought-Steel Welding Fittings: ASTM A 234/A 234M for butt welding and socket welding.
 - 3. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.

- 4. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 - a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.
- 5. Viega MegaPress G Natural Gas System (Exterior Above grade Applications): Fittings: Cold Press Mechanical Joint Fitting shall conform to material requirements of ASTM A420 or ASME B16.3 and performance criteria ANSI/CSA LC4. Sealing elements for press fittings shall be HNBR. Sealing elements shall be factory installed or an alternative supplied by fitting manufacturer. Press ends shall have SC (Smart ConnectTM) feature design (leakage path). MegaPress fittings with Smart Connect Feature assure leakage of liquids and/or gases from inside the system past the sealing element of an un-pressed connection. The function of this feature is to provide the installer quick and easy identification of connections which have not been pressed prior to putting the system into operation. Note: Verify pipe and fittings with applicable codes. Piping and fittings shall comply with CSA LC-4 and the latest edition of NFPA-54.

B. PE Pipe: ASTM D 2513, SDR 11.

- 1. PE Fittings: ASTM D 2683, socket-fusion type or ASTM D 3261, butt-fusion type with dimensions matching PE pipe.
- 2. PE Transition Fittings: Factory-fabricated fittings with PE pipe complying with ASTM D 2513, SDR 11; and steel pipe complying with ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
- 3. Anodeless Service-Line Risers: Factory fabricated and leak tested.
 - a. Underground Portion: PE pipe complying with ASTM D 2513, SDR 11 inlet.
 - b. Casing: Steel pipe complying with ASTM A 53/A 53M, Schedule 40, black steel, Type E or S, Grade B, with corrosion-protective coating covering. Vent casing aboveground.
 - c. Aboveground Portion: PE transition fitting.
 - d. Outlet shall be threaded or suitable for welded connection.
 - e. Tracer wire connection.
 - f. Ultraviolet shield.
 - g. Stake supports with factory finish to match steel pipe casing or carrier pipe.
- 4. Transition Service-Line Risers: Factory fabricated and leak tested.
 - a. Underground Portion: PE pipe complying with ASTM D 2513, SDR 11 inlet connected to steel pipe complying with ASTM A 53/A 53M, Schedule 40, Type E or S, Grade B, with corrosion-protective coating for aboveground outlet.
 - b. Outlet shall be threaded or suitable for welded connection.
 - c. Bridging sleeve over mechanical coupling.
 - d. Factory-connected anode.
 - e. Tracer wire connection.
 - f. Ultraviolet shield.
 - g. Stake supports with factory finish to match steel pipe casing or carrier pipe.

2.2 PIPING SPECIALTIES

- A. Appliance Flexible Connectors:
 - 1. Indoor, Fixed-Appliance Flexible Connectors: Comply with ANSI Z21.24.
 - 2. Indoor, Movable-Appliance Flexible Connectors: Comply with ANSI Z21.69.
 - 3. Outdoor, Appliance Flexible Connectors: Comply with ANSI Z21.75.
 - 4. Corrugated stainless-steel tubing with polymer coating.
 - 5. Operating-Pressure Rating: 0.5 psig (3.45 kPa).
 - 6. End Fittings: Zinc-coated steel.

- 7. Threaded Ends: Comply with ASME B1.20.1.
- 8. Maximum Length: 72 inches (1830 mm.)
- B. Quick-Disconnect Devices: Comply with ANSI Z21.41.
 - 1. Copper-alloy convenience outlet and matching plug connector.
 - 2. Nitrile seals.
 - 3. Hand operated with automatic shutoff when disconnected.
 - 4. For indoor or outdoor applications.
 - 5. Adjustable, retractable restraining cable.

C. Y-Pattern Strainers:

- 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller.
- 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
- 4. CWP Rating: 125 psig (862 kPa).
- D. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 **JOINING MATERIALS**

- A. Joint Compound and Tape: Suitable for natural gas.
- B. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 MANUAL GAS SHUTOFF VALVES

- A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.
- B. General Requirements for Metallic Valves, NPS 2 (DN 50) and Smaller: Comply with ASME B16.33.
 - 1. CWP Rating: 125 psig (862 kPa).
 - 2. Threaded Ends: Comply with ASME B1.20.1.
 - 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 - 4. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch (25 mm) and smaller.
 - 6. Service Mark: Valves 1-1/4 inches (32 mm) to NPS 2 (DN 50) shall have initials "WOG" permanently marked on valve body.
- C. One-Piece, Bronze Ball Valve with Bronze Trim: MSS SP-110.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>BrassCraft Manufacturing Company</u>; a Masco company.
 - b. Conbraco Industries, Inc.; Apollo Div.
 - c. Lyall, R. W. & Company, Inc.
 - d. McDonald, A. Y. Mfg. Co.
 - e. Perfection Corporation; a subsidiary of American Meter Company.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Ball: Chrome-plated brass.

- 4. Stem: Bronze; blowout proof.
- 5. Seats: Reinforced TFE; blowout proof.
- 6. Packing: Separate packnut with adjustable-stem packing threaded ends.
- 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
- 8. CWP Rating: 600 psig (4140 kPa).
- 9. Listing: Valves NPS 1 (DN 25) and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
- 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- D. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. BrassCraft Manufacturing Company; a Masco company.
 - b. <u>Conbraco Industries, Inc.; Apollo Div.</u>
 - c. Lyall, R. W. & Company, Inc.
 - d. McDonald, A. Y. Mfg. Co.
 - e. <u>Perfection Corporation</u>; a subsidiary of American Meter Company.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Ball: Chrome-plated bronze.
 - 4. Stem: Bronze; blowout proof.
 - 5. Seats: Reinforced TFE; blowout proof.
 - 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 - 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 8. CWP Rating: 600 psig (4140 kPa).
 - 9. Listing: Valves NPS 1 (DN 25) and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- E. Bronze Plug Valves: MSS SP-78.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Lee Brass Company</u>.
 - b. McDonald, A. Y. Mfg. Co.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Plug: Bronze.
 - 4. Ends: Threaded, socket, as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 5. Operator: Square head or lug type with tamperproof feature where indicated.
 - 6. Pressure Class: 125 psig (862 kPa).
 - 7. Listing: Valves NPS 1 (DN 25) and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- F. PE Ball Valves: Comply with ASME B16.40.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:

- a. Kerotest Manufacturing Corp.
- b. Lyall, R. W. & Company, Inc.
- c. <u>Perfection Corporation</u>; a subsidiary of American Meter Company.
- 2. Body: PE.
- 3. Ball: PE.
- 4. Stem: Acetal.
- 5. Seats and Seals: Nitrile.
- 6. Ends: Plain or fusible to match piping.
- 7. CWP Rating: 80 psig (552 kPa).
- 8. Operating Temperature: Minus 20 to plus 140 deg F (Minus 29 to plus 60 deg C).
- 9. Operator: Nut or flat head for key operation.
- 10. Include plastic valve extension.
- 11. Include tamperproof locking feature for valves where indicated on Drawings.

G. Valve Boxes:

- 1. Cast-iron, two-section box.
- 2. Top section with cover with "GAS" lettering.
- 3. Bottom section with base to fit over valve and barrel a minimum of 5 inches (125 mm) in diameter.
- 4. Adjustable cast-iron extensions of length required for depth of bury.
- 5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head, and with stem of length required to operate valve.

2.5 MOTORIZED GAS VALVES

- A. Electrically Operated Valves: Comply with UL 429.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ASCO Power Technologies, LP; Division of Emerson.
 - b. Dungs, Karl, Inc.
 - c. Eclipse Combustion, Inc.
 - d. Goyen Valve Corp.; Tyco Environmental Systems.
 - e. Magnatrol Valve Corporation.
 - f. Parker Hannifin Corporation; Climate & Industrial Controls Group; Skinner Valve Div.
 - g. Watts Regulator Co.; Division of Watts Water Technologies, Inc.
 - 2. Pilot operated.
 - 3. Body: Brass or aluminum.
 - 4. Seats and Disc: Nitrile rubber.
 - 5. Springs and Valve Trim: Stainless steel.
 - 6. 120-V ac, 60 Hz, Class B, continuous-duty molded coil, and replaceable.
 - 7. NEMA ICS 6, Type 4, coil enclosure.
 - 8. Normally closed.
 - 9. Visual position indicator.
- B. Earthquake Valves: Comply with ASCE 25.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Pacific Seismic Products, Inc.</u>
 - 2. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction.

- 3. Maximum Operating Pressure: 0.5 psig (3.45 kPa) 7 psig (48 kPa) 60 psig (414 kPa).
- 4. Cast-aluminum body with stainless-steel internal parts.
- 5. Nitrile-rubber, reset-stem o-ring seal.
- 6. Valve position, open or closed, indicator.
- 7. Composition valve seat with clapper held by spring or magnet locking mechanism.
- 8. Level indicator.
- 9. End Connections: Threaded for valves NPS 2 (DN 50) and smaller.

2.6 PRESSURE REGULATORS

- A. General Requirements:
 - 1. Single stage and suitable for natural gas.
 - 2. Steel jacket and corrosion-resistant components.
 - 3. Elevation compensator.
 - 4. End Connections: Threaded for regulators NPS 2 (DN 50) and smaller.
- B. Line Pressure Regulators: Comply with ANSI Z21.80.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Actaris.
 - b. <u>American Meter Company</u>.
 - c. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 - d. <u>Invensys</u>.
 - e. <u>Maxitrol Company</u>.
 - f. Pietro Fiorentini.
 - 2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
 - 3. Springs: Zinc-plated steel; interchangeable.
 - 4. Diaphragm Plate: Zinc-plated steel.
 - 5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
 - 6. Orifice: Aluminum; interchangeable.
 - 7. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
 - 8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
 - 9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
 - 10. Overpressure Protection Device: Factory mounted on pressure regulator.
 - 11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
- C. Appliance Pressure Regulators: Comply with ANSI Z21.18.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Canadian Meter Company Inc.
 - b. <u>Eaton Corporation; Controls Div.</u>
 - c. Harper Wyman Co.
 - d. Maxitrol Company.
 - e. SCP, Inc.
 - 2. Body and Diaphragm Case: Die-cast aluminum.
 - 3. Springs: Zinc-plated steel; interchangeable.

- 4. Diaphragm Plate: Zinc-plated steel.
- 5. Seat Disc: Nitrile rubber.
- 6. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
- 7. Factory-Applied Finish: Minimum three-layer polyester and polyurethane paint finish.
- 8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.

2.7 DIELECTRIC UNIONS

- A. Dielectric Unions:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Capitol Manufacturing Company</u>.
 - b. <u>Central Plastics Company</u>.
 - c. Hart Industries International, Inc.
 - d. <u>Jomar International Ltd.</u>
 - e. Matco-Norca, Inc.
 - f. McDonald, A. Y. Mfg. Co.
 - g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - h. Wilkins; a Zurn company.
 - 2. Description:
 - a. Standard: ASSE 1079.
 - b. Pressure Rating: 125 psig (860 kPa) minimum at 180 deg F (82 deg C).
 - c. End Connections: Solder-joint copper alloy and threaded ferrous.

2.8 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches (150 mm) wide and 4 mils (0.1 mm) thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches (750 mm) deep; colored yellow.

PART 3 - EXECUTION

3.1 OUTDOOR PIPING INSTALLATION

- A. Comply with NFPA 54 for installation and purging of natural-gas piping.
- B. Install underground, natural-gas piping buried at least 36 inches (900 mm) below finished grade. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.
 - 1. If natural-gas piping is installed less than 36 inches (900 mm) below finished grade, install it in containment conduit.
- C. Install underground, PE, natural-gas piping according to ASTM D 2774.
- D. Steel Piping with Protective Coating:
 - 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 - 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
 - 3. Replace pipe having damaged PE coating with new pipe.

- E. Copper Tubing with Protective Coating:
 - 1. Apply joint cover kits over tubing to cover, seal, and protect joints.
 - 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
- F. Install fittings for changes in direction and branch connections.
- G. Install pressure gauge upstream and downstream from each service regulator.

3.2 INDOOR PIPING INSTALLATION

- A. Comply with NFPA 54 for installation and purging of natural-gas piping.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
- D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- G. Locate valves for easy access.
- H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.
- I. Install piping free of sags and bends.
- J. Install fittings for changes in direction and branch connections.
- K. Verify final equipment locations for roughing-in.
- L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.
- M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 - 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches (75 mm) long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.
- N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.
- O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.
- P. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.

- 1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.
- 2. In Floors: Install natural-gas piping with welded or brazed joints and protective coating in cast-in-place concrete floors. Cover piping to be cast in concrete slabs with minimum of 1-1/2 inches (38 mm) of concrete. Piping may not be in physical contact with other metallic structures such as reinforcing rods or electrically neutral conductors. Do not embed piping in concrete slabs containing quick-set additives or cinder aggregate.
- 3. In Floor Channels: Install natural-gas piping in floor channels. Channels must have cover and be open to space above cover for ventilation.
- 4. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.
 - a. Exception: Tubing passing through partitions or walls does not require striker barriers.

5. Prohibited Locations:

- a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
- b. Do not install natural-gas piping in solid walls or partitions.
- Q. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
- R. Connect branch piping from top or side of horizontal piping.
- S. Install unions in pipes NPS 2 (DN 50) and smaller, adjacent to each valve, at final connection to each piece of equipment.
- T. Do not use natural-gas piping as grounding electrode.
- U. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.
- V. Install pressure gauge upstream and downstream from each line regulator.
- W. Install sleeves for piping penetrations of walls, ceilings, and floors.
- X. Install sleeve seals for piping penetrations of concrete walls and slabs.
- Y. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.3 VALVE INSTALLATION

- A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing or copper connector.
- B. Install underground valves with valve boxes.
- C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.
- D. Install earthquake valves aboveground outside buildings according to listing.
- E. Install anode for metallic valves in underground PE piping.

3.4 PIPING JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Threaded Joints:
 - 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.

- 2. Cut threads full and clean using sharp dies.
- 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
- 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
- 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:

- 1. Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators.
- 2. Bevel plain ends of steel pipe.
- 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.
- F. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.
- G. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 - 1. Plain-End Pipe and Fittings: Use butt fusion.
 - 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hangers and supports.
- B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1 (DN 25) and Smaller: Maximum span, 96 inches (2438 mm); minimum rod size, 3/8 inch (10 mm).
 - 2. NPS 1-1/4 (DN 32): Maximum span, 108 inches (2743 mm); minimum rod size, 3/8 inch (10 mm).
 - 3. NPS 1-1/2 and NPS 2 (DN 40 and DN 50): Maximum span, 108 inches (2743 mm); minimum rod size, 3/8 inch (10 mm).
 - 4. NPS 2-1/2 to NPS 3-1/2 (DN 65 to DN 90): Maximum span, 10 feet (3 m); minimum rod size, 1/2 inch (13 mm).
 - 5. NPS 4 (DN 100) and Larger: Maximum span, 10 feet (3 m); minimum rod size, 5/8 inch (15.8 mm).

C. Exterior Roof Piping Support:

- 1. Provide dynamic roof mounted roller bearing pipe support with axil, roller, polycarbonate base/roller pipe strap, and base pad support.
- 2. All metal parts shall be stainless steel.
- 3. Install pipe supports not to exceed 10' centers.
- 4. Install pipe supports to ensure each support is properly elevated to evenly distribute weight at all pipe support locations.
- 5. Pipe support system shall elevate piping 12" above roof minimum.
- 6. Slip resistant base pad shall be provided with support system to protect roof and keep support in place.
- 7. Supports shall be Miro Industries model RAH-12 or pre-approved equal.

3.6 CONNECTIONS

- A. Connect to utility's gas main according to utility's procedures and requirements.
- B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.
- C. Install piping adjacent to appliances to allow service and maintenance of appliances.
- D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches (1800 mm) of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.
- E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.7 LABELING AND IDENTIFYING

- A. Comply with requirements for piping and valve identification.
- B. Install detectable warning tape directly above gas piping, 12 inches (300 mm) below finished grade, except 6 inches (150 mm) below subgrade under pavements and slabs.

3.8 PAINTING

- A. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 - 1. Alkyd System: MP1 EXT 5.1D.
 - a. Prime Coat: Alkyd anticorrosive metal primer.
 - b. Intermediate Coat: Exterior alkyd enamel matching topcoat.
 - c. Topcoat: Exterior alkyd enamel.
 - d. Color: Per architects direction.
- B. Paint exposed, interior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 - 1. Latex Over Alkyd Primer System: MP1 INT 5.1Q.
 - a. Prime Coat: Alkyd anticorrosive metal primer.
 - b. Intermediate Coat: Interior latex matching topcoat.
 - c. Topcoat: Interior latex gloss.
 - d. Color: Per architects direction.
- C. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.9 FIELD QUALITY CONTROL

- A. Test, inspect, and purge natural gas according to NFPA 54 and authorities having jurisdiction.
- B. Natural-gas piping will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.10 OUTDOOR PIPING SCHEDULE

A. Underground natural-gas piping shall be the following:

- 1. PE pipe and fittings joined by heat fusion; service-line risers with tracer wire terminated in an accessible location.
- B. Aboveground natural-gas piping shall be the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints (up to and including 2" NPS).
 - 2. Steel pipe with wrought-steel fittings and welded joints (2 1/2" NPS and larger).
- C. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

3.11 INDOOR PIPING SCHEDULE

- A. Aboveground, branch piping NPS 1 (DN 25) and smaller shall be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
- B. Aboveground, distribution piping shall be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints (up to and including 2" NPS).
 - 2. Steel pipe with wrought-steel fittings and welded joints (2 1/2" NPS and larger).
- C. Underground, below building, piping shall be the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints (up to and including 2" NPS).
 - 2. Steel pipe with wrought-steel fittings and welded joints (2 1/2" NPS and larger).
- D. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
- E. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping. Vent shall be extended to exterior.
- F. Gas piping in return air plenums shall be encased in containment conduit. Vent encasement pipe to exterior or inside boiler room.

3.12 UNDERGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Connections to Existing Gas Piping: Use valve and fitting assemblies made for tapping utility's gas mains and listed by an NRTL.
- B. Underground: PE valves.

3.13 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Valves for pipe sizes NPS 2 (DN 50) and smaller at service meter shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.
 - 3. Bronze plug valve.
- B. Distribution piping valves for pipe sizes NPS 2 (DN 50) and smaller shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.
 - 3. Bronze plug valve.
- C. Valves in branch piping for single appliance shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.

3. Bronze plug valve.

End of Section 231123

SECTION 232113

HYDRONIC PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes pipe and fitting materials, calibrated-orifice balancing valves, automatic flow-control valves, joining methods, special-duty valves, and specialties for the following:
 - 1. Hot-water heating piping.
 - 2. Chilled-water piping.
 - 3. Condenser-water piping.
 - 4. Heat Pump loop piping.
 - 5. Makeup-water piping.
 - 6. Condensate-drain piping.
 - 7. Blowdown-drain piping.
 - 8. Air-vent piping.
 - 9. Safety-valve-inlet and -outlet piping.
- B. See Section 232123 "Hydronic Pumps" for pumps, motors, and accessories for hydronic piping.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Pressure-seal fittings.
 - 2. Valves. Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
 - 3. Grooved joint products shall be shown on drawings and product submittals and shall be specifically identified with the applicable Victaulic style or series number.
 - 4. Air control devices.
 - 5. Chemical treatment.
 - 6. Hydronic specialties.

B. LEED Submittals:

- 1. Product Data for Credit IEQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.
- 2. Laboratory Test Reports for Credit IEQ 4: For solvent cements and adhesive primers, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Shop Drawings: Detail, at 1/4 (1:50) scale, the piping layout, fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
- B. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be of the same manufacturer as the grooved components.
 - 1. All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Drawn-Temper Copper Tubing: ASTM B 88, Type L (ASTM B 88M, Type B).
- B. Annealed-Temper Copper Tubing: ASTM B 88, Type K (ASTM B 88M, Type A).
- C. DWV Copper Tubing: ASTM B 306, Type DWV.
- D. Wrought-Copper Fittings: ASME B16.22.
- E. Wrought-Copper Unions: ASME B16.22.
- F. Grooved Mechanical-Joint Fittings and Couplings for Copper Tubing:
 - 1. Manufactureres: Subject to compliance with requirements, provide products by one of the following:
 - a. Victaulic Company.
 - 2. Joint Fittings: ASME B16.22 wrought copper or ASME B16.18 cast bronze, manufactured to copper-tube dimensions. (Flaring of the tube or fitting ends o accommodate alternate sized coupling is not permitted.) Basis of Design: Victaulic Copper Connection.
 - 3. Couplings: Ductile-iron housing cast with offsetting, angle-pattern, bolt pads, Grade EHP gasket of central cavity pressure-responsive design for water temperatures to +250 deg F: with ASTM A449 compliant nuts and bolts. Installation-Ready, for direct stab installation without field disassembly. Basis of Design: Victaulic Style 607.
- G. Copper Pressure Seal Joint Fitting (Viega ProPress).
 - 1. Press Fitting: Copper and copper alloy press fittings shall conform to material requirements of ASME B16.18 or ASME B16.22 and performance criteria of IAPMO PS 117. Sealing elements for press fittings shall be EPDM. Sealing elements shall be factory installed or an alternative supplied by fitting manufacturer. Press ends shall have SC (Smart Connect®) feature design (leakage path). In ProPress ½" to 4" dimensions the Smart Connect Feature assures leakage of liquids and/or gases from inside the system past the sealing element of an unpressed connection. The function of this feature is to provide the installer quick and easy identification of connections which have not been pressed prior to putting the system into operation.

2.2 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; type, grade, and wall thickness as indicated in Part 3 "Piping Applications" Article.

- B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in Part 3 "Piping Applications" Article.
- C. Malleable-Iron Threaded Fittings: ASME B16.3, Classes 150 and 300 as indicated in Part 3 "Piping Applications" Article.
- D. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in Part 3 "Piping Applications" Article.
- E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in Part 3 "Piping Applications" Article.
- F. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - 1. Material Group: 1.1.
 - 2. End Connections: Butt welding.
 - 3. Facings: Raised face.
- G. Grooved Mechanical-Joint Fittings and Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Victaulic Company.
 - 2. Joint Fittings: ASTM A 536, Grade 65-45-12 ductile iron ASTM A 53/A 53M, Type F, E, or S, Grade B factory-fabricated steel; or ASTMA 234, Grade WPB steel fittings with grooves or shoulders constructed to accept grooved-end couplings; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.
 - 3. Couplings: Two ductile-iron housing and synthetic rubber gasket of central cavity pressure-responsive design; with ASTM A449 compliant steel nuts and bolts, to secure grooved pipe and fittings.
 - a. Rigid: Coupling housing with offsetting, angle-pattern bolt pads shall be used to provide system rigidity and support and hanging in accordance without filed disassembly. Basis of Design: Victaulic Style 107N.
 - b. Flexible: Use in locations where vibration attenuation and stress relief are required. Basis of Design: Victaulic Style 177 Installation-Ready, and Style 77.
 - c. AGS series two-segment couplings for 14" (350mm) and larger piping, with lead-in chamfer on housing key and wide-width FlushSeal gasket. Basis of Design: Victaulic Style W07 (rigid) and Style W77 (flexible).

2.3 JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

- D. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.
- E. Grooved Joint Lubricants: Lubricate gaskets with lubricant supplied by the coupling manufacturer in accordance with published installation instructions. The lubricant shall approved for the gasket elastomer and system media.
- F. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.4 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. McDonald, A. Y. Mfg. Co.
 - b. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - c. Wilkins; a Zurn company.
 - 2. Description:
 - a. Standard: ASSE 1079.
 - b. Pressure Rating: 125 psig (860 kPa) minimum at 180 deg F (82 deg C).
 - c. End Connections: Solder-joint copper alloy and threaded ferrous.

2.5 VALVES

- A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Section 230523 "General-Duty Valves for HVAC Piping."
- B. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Section 230900 "Instrumentation and Control for HVAC."
- C. Bronze, Calibrated-Orifice, Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong Pumps, Inc.
 - b. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - c. Flow Design Inc.
 - d. Gerand Engineering Co.
 - e. Griswold Controls.
 - f. Taco.
 - g. Tour & Andersson; available through Victaulic Company.
 - h. <u>Pro Hydronics Specialties.</u>
 - 2. Body: DZR Brass (Ametal®) globe type or Bronze, ball or plug type with calibrated orifice or venturi.
 - 3. Ball: Brass or stainless steel.
 - 4. Plug: Resin.
 - 5. Disc: DZR Brass (Ametal®).
 - 6. Seat: PTFE or EPDM.

- 7. End Connections: Threaded or socket.
- 8. Pressure Gage Connections: Integral seals for portable differential pressure meter.
- 9. Handle Style: Multiple-turn handwheel for precise balancing or standard lever, with memory stop to retain set position.
- 10. CWP Rating: Minimum 250 psig (1725kPa).
- 11. Maximum Operating Temperature: 230 deg F (110 deg C).
- 12. Victaulic Koil-Kits Series 799, 79V, 79A, and 79B may be used at coil connections. The kit shall include a Series 786/787/78K circuit balancing valve, Series 78Y Strainer-Ball or Series 78T Union-Ball valve combination, Series 78U Union-Port fitting, and required coil hoses. A Style 793 and/or 794 differential pressure controller shall be provided as required. A meter shall be provided by the valve manufacturer that shall remain with the building owner after commissioning.
- D. Cast-Iron or Steel, Calibrated-Orifice, Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong Pumps, Inc.
 - b. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - c. Flow Design Inc.
 - d. Gerand Engineering Co.
 - e. Griswold Controls.
 - f. Taco.
 - g. <u>Tour & Anderson: available through Victaulic Company.</u>
 - 2. Body: Cast-iron or steel body, ball, plug, or globe pattern with calibrated orifice or venturi.
 - 3. Ball: Brass or stainless steel.
 - 4. Stem Seals: EPDM O-rings.
 - 5. Disc: Glass and carbon-filled PTFE.
 - 6. Seat: PTFE.
 - 7. End Connections: Flanged or grooved.
 - 8. Pressure Gage Connections: Integral seals for portable differential pressure meter.
 - 9. Handle Style: Multiple-turn handwheel for precise balancing or standard lever, with memory stop to retain position.
 - 10. CWP Rating: Minimum 250 psig (1725kPa).
 - 11. Maximum Operating Temperature: 230 deg F (110 deg C).
- E. Diaphragm-Operated, Pressure-Reducing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Amtrol, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - d. Conbraco Industries, Inc.
 - e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Body: Bronze or brass.
 - 3. Disc: Glass and carbon-filled PTFE.
 - 4. Seat: Brass.
 - 5. Stem Seals: EPDM O-rings.
 - 6. Diaphragm: EPT.
 - 7. Low inlet-pressure check valve.

- 8. Inlet Strainer: stainless steel, removable without system shutdown.
- 9. Valve Seat and Stem: Noncorrosive.
- 10. Valve Size, Capacity, and Operating Pressure: Selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.

F. Diaphragm-Operated Safety Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Amtrol, Inc.
 - b. <u>Armstrong Pumps, Inc.</u>
 - c. <u>Bell & Gossett Domestic Pump; a division of ITT Industries.</u>
 - d. Conbraco Industries, Inc.
 - e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
- 2. Body: Bronze or brass.
- 3. Disc: Glass and carbon-filled PTFE.
- 4. Seat: Brass.
- 5. Stem Seals: EPDM O-rings.
- 6. Diaphragm: EPT.
- 7. Wetted, Internal Work Parts: Brass and rubber.
- 8. Inlet Strainer: stainless steel, removable without system shutdown.
- 9. Valve Seat and Stem: Noncorrosive.
- 0. Valve Size, Capacity, and Operating Pressure: Comply with ASME Boiler and Pressure Vessel Code: Section IV, and selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.

G. Automatic Flow-Control Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Pro Hydronic Specialties.
 - b. Flow Design Inc.
 - c. <u>Griswold Controls</u>.
 - d. Victaulic Company.
- 2. Body: Stainless steel with capability to measure flow.
- 3. Piston and Spring Assembly: Stainless steel, tamper proof, self cleaning, and removable.
- 4. Combination Assemblies: Include bonze or brass-alloy ball valve.
- 5. Identification Tag: Marked with zone identification, valve number, and flow rate.
- 6. Size: Same as pipe in which installed.
- 7. Performance: Maintain constant flow, plus or minus 5 percent over system pressure fluctuations.
- 8. Minimum CWP Rating: 175 psig (1207 kPa).
- 9. Maximum Operating Temperature: 250 deg F (121 deg C).

2.6 AIR CONTROL DEVICES

- A. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following: Note: Spirotherm is only Approved Manufacturer of Air & Dirt Separators. No substitutions will be accepted.
 - 1. <u>Amtrol, Inc</u>.
 - 2. <u>Armstrong Pumps, Inc.</u>

- 3. <u>Bell & Gossett Domestic Pump</u>; a division of ITT Industries.
- 4. Taco.
- 5. Spirotherm, Inc.
- B. Manual Air Vents:
 - 1. Body: Bronze.
 - 2. Internal Parts: Nonferrous.
 - 3. Operator: Screwdriver or thumbscrew.
 - 4. Inlet Connection: NPS 1/2 (DN 15).
 - 5. Discharge Connection: NPS 1/8 (DN 6).
 - 6. CWP Rating: 150 psig (1035 kPa).
 - 7. Maximum Operating Temperature: 225 deg F (107 deg C).

C. Expansion Tanks:

- 1. Tank: Welded steel, rated for 125-psig (860-kPa) working pressure and 375 deg F (191 deg C) maximum operating temperature, with taps in bottom of tank for tank fitting and taps in end of tank for gage glass. Tanks shall be factory tested with taps fabricated and labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
- 2. Air-Control Tank Fitting: Cast-iron body, copper-plated tube, brass vent tube plug, and stainless-steel ball check, 100-gal. (379-L) unit only; sized for compression-tank diameter. Provide tank fittings for 125-psig (860-kPa) working pressure and 250 deg F (121 deg C) maximum operating temperature.
- 3. Tank Drain Fitting: Brass body, nonferrous internal parts; 125-psig (860-kPa) working pressure and 240 deg F (116 deg C) maximum operating temperature; constructed to admit air to compression tank, drain water, and close off system.
- 4. Gage Glass: Full height with dual manual shutoff valves, 3/4-inch- (20-mm-) diameter gage glass, and slotted-metal glass guard.
- D. In-Line Air & Dirt Separators (Spirotherm is only Approved Manufacturer):
 - 1. Tank: One-piece cast iron with an integral weir constructed to decelerate system flow to maximize air separation.
 - 2. Maximum Working Pressure: Up to 150 psig (1035 kPa).
 - 3. Maximum Operating Temperature: Up to 300 deg F (149 deg C).
 - 4. Furnish and install as shown on the drawings and schedule a full flow coalescing type combination air eliminator and dirt separator for the hot and chilled water systems. Selection shall be based upon system flow with pipe size as a minimum in accordance with the basis of design. In no case shall entering velocity exceed 10 feet per second. Separator shall be fabricated steel, rated for 150 psig working pressure, stamped and registered in accordance with ASME Section VIII, Division 1 for unfired pressure vessels, and include two equal chambers above and below the inlet/outlet nozzles. The vessel diameter and height above and below the inlet/outlet connections must be equal to the basis of design. Unit shall include internal Spirotube® elements filling the entire vessel to suppress turbulence and provide air elimination efficiency of 100% free air, 100% entrained air, and 99.6% dissolved air at the installed location. Dirt separation efficiency shall be a minimum of 80% of all particles 30 micron and larger within 100 passes. The elements must consist of a copper core tube with continuous wound copper wire medium permanently attached and followed by a separate continuous wound copper wire permanently affixed. Each unit shall have a separate venting chamber to prevent system contaminants from harming the float and venting valve operation. At the top of the venting chamber shall be an integral full port float actuated brass venting mechanism. Units shall include a valved side tap to

flush floating dirt or liquids and for quick bleeding of large amounts of air during system fill or refill.

2.7 CHEMICAL TREATMENT

- A. Bypass Chemical Feeder: Welded steel construction; 125-psig (860-kPa) working pressure; 5-gal. (19-L) capacity; with fill funnel and inlet, outlet, and drain valves.
 - 1. Chemicals: Specially formulated, based on analysis of makeup water, to prevent accumulation of scale and corrosion in piping and connected equipment.
- B. Propylene Glycol: Industrial grade with corrosion inhibitors and environmental-stabilizer additives for mixing with water in systems indicated to contain antifreeze or glycol solutions. See Section 232500 "HVAC Water Treatment".

2.8 HYDRONIC PIPING SPECIALTIES

- A. Y-Pattern Strainers:
 - 1. Body:
 - a. ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 - b. ASTM A 536, Grade 65-45-12, ductile iron with coupled cover
 - 2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged or grooved ends for NPS 2-1/2 (DN 65) and larger.
 - 3. Strainer Screen: 20-mesh rating, 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
 - 4. CWP Rating: 300 psig (2065 kPa).
 - a. Basis of Design: Victaulic Company. Style 732/W732
- B. Stainless-Steel Bellow, Flexible Connectors:
 - 1. Body: Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket.
 - 2. End Connections: Threaded or flanged to match equipment connected.
 - 3. Performance: Capable of 3/4-inch (20-mm) misalignment.
 - 4. CWP Rating: 150 psig (1035 kPa).
 - 5. Maximum Operating Temperature: 250 deg F (121 deg C).
 - 6. Three flexible type grooved joint couplings may be used in lieu of flexible connectors at equipment connections in applicable piping systems. The couplings shall be placed in close proximity to the vibration source. Basis of Design: Victaulic Company.
- C. Expansion fittings are specified in Section 230516 "Expansion Fittings and Loops for HVAC Piping."

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Hot-water heating piping, aboveground, NPS 2 (DN 50) and smaller, shall be one of the following:
 - 1. Type L (B), drawn-temper copper tubing, wrought-copper fittings, and soldered, brazed or pressure-seal joints.
 - 2. Schedule 40 steel pipe; Class 125, cast-iron 150, malleable-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
- B. Hot-water heating piping, aboveground, NPS 2-1/2 (DN 65) and larger, shall be one of the following:
 - 1. Type L (B) or drawn-temper copper tubing, wrought-copper fittings, and soldered, brazed joints.
 - 2. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.

Hydronic Piping Page 8 of 14 Section 232113

- 3. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.
- C. Chilled-water piping, aboveground, NPS 2 (DN 50) and smaller, shall be one of the following:
 - 1. Type L (B) or drawn-temper copper tubing, wrought-copper fittings, and soldered, brazed pressure-seal joints.
 - 2. Schedule 40 steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
- D. Chilled-water piping, aboveground, NPS 2-1/2 (DN 65) and larger, shall be one of the following:
 - 1. Type L (B) or drawn-temper copper tubing, wrought-copper fittings, and soldered, brazed joints.
 - 2. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
 - 3. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.
- E. Condenser-water piping, aboveground, NPS 2 (DN 50) and smaller, shall be one of the following:
 - 1. Type L (B) or drawn-temper copper tubing, wrought-copper fittings, and soldered, brazed or pressure-seal joints.
 - 2. Schedule 80 steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
- F. Condenser-water piping, aboveground, NPS 2-1/2 (DN 65) and larger, shall be the following:
 - 1. Type L (B), drawn-temper copper tubing, wrought-copper fittings, and soldered, brazed joints.
 - 2. Schedule 80 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
 - 3. Schedule 80 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.
- G. Makeup-water piping installed aboveground shall be the following:
 - 1. Type L (B), drawn-temper copper tubing, wrought-copper fittings, and soldered, brazed joints.
- H. Condensate-Drain Piping: Type M (C) or DWV, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- I. Blowdown-Drain Piping: Same materials and joining methods as for piping specified for the service in which blowdown drain is installed.
- J. Air-Vent Piping:
 - 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.
 - 2. Outlet: Type K (A), annealed-temper copper tubing with soldered or flared joints.
- K. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.

3.2 VALVE APPLICATIONS

- A. Install shutoff-duty valves at each branch connection to supply mains, and at supply connection to each piece of equipment.
- B. Install calibrated-orifice, balancing valves at each branch connection to return main.

- C. Install calibrated-orifice, balancing valves in the return pipe of each heating or cooling terminal.
- D. Install check valves at each pump discharge and elsewhere as required to control flow direction.
- E. Install safety valves at hot-water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Install drip-pan elbow on safety-valve outlet and pipe without valves to the outdoors; and pipe drain to nearest floor drain or as indicated on Drawings. Comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, for installation requirements.
- F. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

3.3 PIPING INSTALLATIONS

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Select system components with pressure rating equal to or greater than system operating pressure.
- K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
- L. Install drains, consisting of a tee fitting, NPS 3/4 (DN 20) ball valve, and short NPS 3/4 (DN 20) threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
- N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
- O. Install branch connections to mains using tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.
- P. Install valves according to Section 230523 "General-Duty Valves for HVAC Piping."
- Q. Install unions in piping, NPS 2 (DN 50) and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- R. Install flanges in piping, NPS 2-1/2 (DN 65) and larger, at final connections of equipment and elsewhere as indicated.
- S. Unions and flanges for servicing and disconnect are not required in installations using grooved mechanical joint couplings. (The couplings shall serve as disconnect points if required.)

- T. Install strainers on inlet side of each control valve, pressure-reducing valve, solenoid valve, in-line pump, and elsewhere as indicated. Install NPS 3/4 (DN 20) nipple and ball valve in blowdown connection of strainers NPS 2 (DN 50) and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2 (DN 50).
- U. Install expansion loops, expansion joints, anchors, and pipe alignment guides as specified in Section 230516 "Expansion Fittings and Loops for HVAC Piping."
- V. Identify piping as specified in Section 230553 "Identification for HVAC Piping and Equipment."
- W. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- X. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- Y. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.4 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor devices are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment." Comply with the following requirements for maximum spacing of supports.
- B. Seismic restraints are specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."
- C. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet (6 m) long.
 - 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet (6 m) or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet (6 m) or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
 - 6. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.
- D. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4 (DN 20): Maximum span, 7 feet (2.1 m); minimum rod size, 1/4 inch (6.4 mm).
 - 2. NPS 1 (DN 25): Maximum span, 7 feet (2.1 m); minimum rod size, 1/4 inch (6.4 mm).
 - 3. NPS 1-1/2 (DN 40): Maximum span, 9 feet (2.7 m); minimum rod size, 3/8 inch (10 mm).
 - 4. NPS 2 (DN 50): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (10 mm).
 - 5. NPS 2-1/2 (DN 65): Maximum span, 11 feet (3.4 m); minimum rod size, 3/8 inch (10 mm).
 - 6. NPS 3 (DN 80): Maximum span, 12 feet (3.7 m); minimum rod size, 3/8 inch (10 mm).
 - 7. NPS 4 (DN 100): Maximum span, 14 feet (4.3 m); minimum rod size, 1/2 inch (13 mm).
- E. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4 (DN 20): Maximum span, 5 feet (1.5 m); minimum rod size, 1/4 inch (6.4 mm).
 - 2. NPS 1 (DN 25): Maximum span, 6 feet (1.8 m); minimum rod size, 1/4 inch (6.4 mm).
 - 3. NPS 1-1/2 (DN 40): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
 - 4. NPS 2 (DN 50): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
 - 5. NPS 2-1/2 (DN 65): Maximum span, 9 feet (2.7 m); minimum rod size, 3/8 inch (10 mm).

Hydronic Piping Page 11 of 14 Section 232113

- 6. NPS 3 (DN 80): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (10 mm).
- F. Plastic Piping Hanger Spacing: Space hangers according to pipe manufacturer's written instructions for service conditions. Avoid point loading. Space and install hangers with the fewest practical rigid anchor points.
- G. Support vertical runs at roof, at each floor, and at 10-foot (3-m) intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- D. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- E. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- G. Grooved Joints: Assemble joints with coupling and gasket, lubricant, and bolts in accordance with the manufacturer's published instructions. Cut or roll grooves in ends of pipe based on pipe and coupling manufacturer's written instructions for pipe wall thickness. Use grooved-end fittings and rigid, grooved-end-pipe couplings.
 - 1. Pipe ends shall be clean and free from indentations, projections and roll marks in the area from pipe end to (and including) groove.
 - 2. Gasket shall be manufactured by the coupling manufacturer and verified as suitable for the intended service.
 - 3. A factory trained representative (direct employee) of the coupling manufacturer shall provide onsite training for contractor's field personnel in the use of grooving tools, application of groove, and product installation. The representative shall periodically visit the job site and review installation to ensure best practices in grooved joint installation are being followed. Contractor shall remove and replace any improperly installed products.

3.6 HYDRONIC SPECIALTIES INSTALLATION

- A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
- B. Install piping from boiler air outlet, air separator, or air purger to expansion tank with a 2 percent upward slope toward tank.
- C. Install in-line air separators in pump suction. Install drain valve on air separators NPS 2 (DN 50) and larger.

- D. Install bypass chemical feeders in each hydronic system where indicated, in upright position with top of funnel not more than 48 inches (1200 mm) above the floor. Install feeder in minimum NPS 3/4 (DN 20) bypass line, from main with full-size, full-port, ball valve in the main between bypass connections. Install NPS 3/4 (DN 20) pipe from chemical feeder drain, to nearest equipment drain and include a full-size, full-port, ball valve.
- E. Install expansion tanks above the air separator. Install tank fitting in tank bottom and charge tank. Use manual vent for initial fill to establish proper water level in tank.
 - 1. Install tank fittings that are shipped loose.
 - 2. Support tank from floor or structure above with sufficient strength to carry weight of tank, piping connections, fittings, plus tank full of water. Do not overload building components and structural members.

3.7 TERMINAL EQUIPMENT CONNECTIONS

- A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.
- B. Install control valves in accessible locations close to connected equipment.
- C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.
- D. Install ports for pressure gauges and thermometers at coil inlet and outlet connections according to Section 230519 "Meters and Gauges for HVAC Piping."

3.8 CHEMICAL TREATMENT

- A. Fill system with fresh water and add liquid alkaline compound with emulsifying agents and detergents to remove grease and petroleum products from piping. Circulate solution for a minimum of 24 hours, drain, clean strainer screens, and refill with fresh water.
- B. Add initial chemical treatment and maintain water quality in ranges noted above for the first year of operation.
- C. Fill systems indicated to have antifreeze or glycol solutions with the following concentrations:
 - 1. Hot-Water Heating Piping: propylene glycol solution see plans for minimum percentage of glycol.
 - 2. Chilled-Water Heating Piping: Minimum percent propylene glycol solution see plans for minimum percentage of glycol.

3.9 FIELD QUALITY CONTROL

- A. Prepare hydronic piping according to ASME B31.9 and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 - 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 - 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 - 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Perform the following tests on hydronic piping:

- 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
- 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
- 3. Isolate expansion tanks and determine that hydronic system is full of water.
- 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
- 5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
- 6. Prepare written report of testing.

C. Perform the following before operating the system:

- 1. Open manual valves fully.
- 2. Inspect pumps for proper rotation.
- 3. Set makeup pressure-reducing valves for required system pressure.
- 4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
- 5. Set temperature controls so all coils are calling for full flow.
- 6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
- 7. Verify lubrication of motors and bearings.

End of Section 232113

SECTION 232300

REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes refrigerant piping used for air-conditioning applications.
- B. Contractor shall refer to refrigerant equipment manufacturer for recommendations and requirements.

1.3 PERFORMANCE REQUIREMENTS

- A. Line Test Pressure for Refrigerant R-134a:
 - 1. Suction Lines for Air-Conditioning Applications: 115 psig (793 kPa).
 - 2. Suction Lines for Heat-Pump Applications: 225 psig (1551 kPa).
 - 3. Hot-Gas and Liquid Lines: 225 psig (1551 kPa).
- B. Line Test Pressure for Refrigerant R-407C:
 - 1. Suction Lines for Air-Conditioning Applications: 230 psig (1586 kPa).
 - 2. Suction Lines for Heat-Pump Applications: 380 psig (2620 kPa).
 - 3. Hot-Gas and Liquid Lines: 380 psig (2620 kPa).
- C. Line Test Pressure for Refrigerant R-410A:
 - 1. Suction Lines for Air-Conditioning Applications: 300 psig (2068 kPa).
 - 2. Suction Lines for Heat-Pump Applications: 535 psig (3689 kPa).
 - 3. Hot-Gas and Liquid Lines: 535 psig (3689 kPa).

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop, based on manufacturer's test data, for the following:
 - 1. Thermostatic expansion valves.
 - 2. Solenoid valves.
 - 3. Hot-gas bypass valves.
 - 4. Filter dryers.
 - 5. Strainers.
 - 6. Pressure-regulating valves.
- B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.
 - 1. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and

Refrigerant Piping Page 1 of 12 Section 232300

length of piping to ensure proper operation and compliance with warranties of connected equipment.

1.5 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Field quality-control test reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Welding & Brazing: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
- B. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.8 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

1.9 COORDINATION

A. Coordinate size and location of roof curbs, equipment supports, and roof penetrations. These items are specified in Section 077200 "Roof Accessories."

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Copper Tube: ASTM B 88, Type K or L (ASTM B 88M, Type A or B)
- B. Wrought-Copper Fittings: ASME B16.22.
- C. Wrought-Copper Unions: ASME B16.22.
- D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
- E. Brazing Filler Metals: AWS A5.8.
- F. Flexible Connectors:
 - 1. Body: Tin-bronze bellows with woven, flexible, tinned-bronze-wire-reinforced protective jacket.
 - 2. End Connections: Socket ends.
 - 3. Offset Performance: Capable of minimum 3/4-inch (20-mm) misalignment in minimum 7-inch- (180-mm-) long assembly.
 - 4. Pressure Rating: Factory test at minimum 500 psig (3450 kPa).
 - 5. Maximum Operating Temperature: 250 deg F (121 deg C).

2.2 STEEL PIPE AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; Type, Grade, and wall thickness as selected in Part 3 piping applications articles.
- B. Wrought-Steel Fittings: ASTM A 234/A 234M, for welded joints.

Refrigerant Piping Page 2 of 12 Section 232300

- C. Steel Flanges and Flanged Fittings: ASME B16.5, steel, including bolts, nuts, and gaskets, bevelwelded end connection, and raised face.
- D. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

E. Flanged Unions:

- 1. Body: Forged-steel flanges for NPS 1 to NPS 1-1/2 (DN 25 to DN 40) and ductile iron for NPS 2 to NPS 3 (DN 50 to DN 80). Apply rust-resistant finish at factory.
- 2. Gasket: Fiber asbestos free.
- 3. Fasteners: Four plated-steel bolts, with silicon bronze nuts. Apply rust-resistant finish at factory.
- 4. End Connections: Brass tailpiece adapters for solder-end connections to copper tubing.
- 5. Offset Performance: Capable of minimum 3/4-inch (20-mm) misalignment in minimum 7-inch- (180-mm-) long assembly.
- 6. Pressure Rating: Factory test at minimum 400 psig (2760 kPa).
- 7. Maximum Operating Temperature: 330 deg F (165 deg C).

F. Flexible Connectors:

- 1. Body: Stainless-steel bellows with woven, flexible, stainless-steel-wire-reinforced protective jacket.
- 2. End Connections:
 - a. NPS 2 (DN 50) and Smaller: With threaded-end connections.
 - b. NPS 2-1/2 (DN 65) and Larger: With flanged-end connections.
- 3. Offset Performance: Capable of minimum 3/4-inch (20-mm) misalignment in minimum 7-inch- (180-mm-) long assembly.
- 4. Pressure Rating: Factory test at minimum 500 psig (3450 kPa).
- 5. Maximum Operating Temperature: 250 deg F (121 deg C).

2.3 VALVES AND SPECIALTIES

A. Diaphragm Packless Valves:

- 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
- 2. Diaphragm: Phosphor bronze and stainless steel with stainless-steel spring.
- 3. Operator: Rising stem and hand wheel.
- 4. Seat: Nylon.
- 5. End Connections: Socket, union, or flanged.
- 6. Working Pressure Rating: 500 psig (3450 kPa).
- 7. Maximum Operating Temperature: 275 deg F (135 deg C).

B. Packed-Angle Valves:

- 1. Body and Bonnet: Forged brass or cast bronze.
- 2. Packing: Molded stem, back seating, and replaceable under pressure.
- 3. Operator: Rising stem.
- 4. Seat: Nonrotating, self-aligning polytetrafluoroethylene.
- 5. Seal Cap: Forged-brass or valox hex cap.
- 6. End Connections: Socket, union, threaded, or flanged.
- 7. Working Pressure Rating: 500 psig (3450 kPa).
- 8. Maximum Operating Temperature: 275 deg F (135 deg C).

C. Check Valves:

- 1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
- 2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
- 3. Piston: Removable polytetrafluoroethylene seat.
- 4. Closing Spring: Stainless steel.
- 5. Manual Opening Stem: Seal cap, plated-steel stem, and graphite seal.
- 6. End Connections: Socket, union, threaded, or flanged.
- 7. Maximum Opening Pressure: 0.50 psig (3.4 kPa).
- 8. Working Pressure Rating: 500 psig (3450 kPa).
- 9. Maximum Operating Temperature: 275 deg F (135 deg C).

D. Service Valves:

- 1. Body: Forged brass with brass cap including key end to remove core.
- 2. Core: Removable ball-type check valve with stainless-steel spring.
- 3. Seat: Polytetrafluoroethylene.
- 4. End Connections: Copper spring.
- 5. Working Pressure Rating: 500 psig (3450 kPa).
- E. Solenoid Valves: Comply with ARI 760 and UL 429; listed and labeled by an NRTL.
 - 1. Body and Bonnet: Plated steel.
 - 2. Solenoid Tube, Plunger, Closing Spring, and Seat Orifice: Stainless steel.
 - 3. Seat: Polytetrafluoroethylene.
 - 4. End Connections: Threaded.
 - 5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch (16-GRC) conduit adapter, and 24 V ac coil.
 - 6. Working Pressure Rating: 400 psig (2760 kPa).
 - 7. Maximum Operating Temperature: 240 deg F (116 deg C).
 - 8. Manual operator.
- F. Safety Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
 - 1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
 - 2. Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Seat Disc: Polytetrafluoroethylene.
 - 4. End Connections: Threaded.
 - 5. Working Pressure Rating: 400 psig (2760 kPa).
 - 6. Maximum Operating Temperature: 240 deg F (116 deg C).
- G. Thermostatic Expansion Valves: Comply with ARI 750.
 - 1. Body, Bonnet, and Seal Cap: Forged brass or steel.
 - 2. Diaphragm, Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Packing and Gaskets: Non-asbestos.
 - 4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
 - 5. Suction Temperature: 40 deg F (4.4 deg C).
 - 6. Superheat: Adjustable.
 - 7. Reverse-flow option (for heat-pump applications).
 - 8. End Connections: Socket, flare, or threaded union.
 - 9. Working Pressure Rating: 700 psig (4820 kPa).
- H. Hot-Gas Bypass Valves: Comply with UL 429; listed and labeled by an NRTL.
 - 1. Body, Bonnet, and Seal Cap: Ductile iron or steel.
 - 2. Diaphragm, Piston, Closing Spring, and Seat Insert: Stainless steel.

Refrigerant Piping
Hanney & Associates Architects

- 3. Packing and Gaskets: Non-asbestos.
- 4. Solenoid Tube, Plunger, Closing Spring, and Seat Orifice: Stainless steel.
- 5. Seat: Polytetrafluoroethylene.
- 6. Equalizer: Internal.
- 7. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch (16-GRC) conduit adapter, and 24 V ac coil.
- 8. End Connections: Socket.
- 9. Throttling Range: Maximum 5 psig (34 kPa).
- 10. Working Pressure Rating: 500 psig (3450 kPa).
- 11. Maximum Operating Temperature: 240 deg F (116 deg C).

I. Straight-Type Strainers:

- 1. Body: Welded steel with corrosion-resistant coating.
- 2. Screen: 100-mesh stainless steel.
- 3. End Connections: Socket or flare.
- 4. Working Pressure Rating: 500 psig (3450 kPa).
- 5. Maximum Operating Temperature: 275 deg F (135 deg C).

J. Angle-Type Strainers:

- 1. Body: Forged brass or cast bronze.
- 2. Drain Plug: Brass hex plug.
- 3. Screen: 100-mesh monel.
- 4. End Connections: Socket or flare.
- 5. Working Pressure Rating: 500 psig (3450 kPa).
- 6. Maximum Operating Temperature: 275 deg F (135 deg C).

K. Moisture/Liquid Indicators:

- 1. Body: Forged brass.
- 2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
- 3. Indicator: Color coded to show moisture content in ppm.
- 4. Minimum Moisture Indicator Sensitivity: Indicate moisture above 60 ppm.
- 5. End Connections: Socket or flare.
- 6. Working Pressure Rating: 500 psig (3450 kPa).
- 7. Maximum Operating Temperature: 240 deg F (116 deg C).

L. Replaceable-Core Filter Dryers: Comply with ARI 730.

- 1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets.
- 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
- 3. Desiccant Media: Activated alumina.
- 4. Designed for reverse flow (for heat-pump applications).
- 5. End Connections: Socket.
- 6. Access Ports: NPS 1/4 (DN 8) connections at entering and leaving sides for pressure differential measurement.
- 7. Maximum Pressure Loss: 2 psig (14 kPa).
- 8. Working Pressure Rating: 500 psig (3450 kPa).
- 9. Maximum Operating Temperature: 240 deg F (116 deg C).

M. Permanent Filter Dryers: Comply with ARI 730.

1. Body and Cover: Painted-steel shell.

Refrigerant Piping Page 5 of 12 Section 232300

- 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
- 3. Desiccant Media: Activated alumina.
- 4. Designed for reverse flow (for heat-pump applications).
- 5. End Connections: Socket.
- 6. Access Ports: NPS 1/4 (DN 8) connections at entering and leaving sides for pressure differential measurement.
- 7. Maximum Pressure Loss: 2 psig (14 kPa).
- 8. Working Pressure Rating: 500 psig (3450 kPa).
- 9. Maximum Operating Temperature: 240 deg F (116 deg C).

N. Mufflers:

- 1. Body: Welded steel with corrosion-resistant coating.
- 2. End Connections: Socket or flare.
- 3. Working Pressure Rating: 500 psig (3450 kPa).
- 4. Maximum Operating Temperature: 275 deg F (135 deg C).
- O. Receivers: Comply with ARI 495.
 - 1. Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
 - 2. Comply with UL 207; listed and labeled by an NRTL.
 - 3. Body: Welded steel with corrosion-resistant coating.
 - 4. Tappings: Inlet, outlet, liquid level indicator, and safety relief valve.
 - 5. End Connections: Socket or threaded.
 - 6. Working Pressure Rating: 500 psig (3450 kPa).
 - 7. Maximum Operating Temperature: 275 deg F (135 deg C).
- P. Liquid Accumulators: Comply with ARI 495.
 - 1. Body: Welded steel with corrosion-resistant coating.
 - 2. End Connections: Socket or threaded.
 - 3. Working Pressure Rating: 500 psig (3450 kPa).
 - 4. Maximum Operating Temperature: 275 deg F (135 deg C).

2.4 REFRIGERANTS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - 1. Atofina Chemicals, Inc.
 - 2. DuPont Company; Fluorochemicals Div.
 - 3. Honeywell, Inc.; Genetron Refrigerants.
 - 4. INEOS Fluor Americas LLC.
- C. ASHRAE 34, R-134a: Tetrafluoroethane.
- D. ASHRAE 34, R-407C: Difluoromethane/Pentafluoroethane/1,1,1,2-Tetrafluoroethane.
- E. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-134a

A. Suction Lines NPS 1-1/2 (DN 40) and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.

Refrigerant Piping
Hanney & Associates Architects

- B. Suction Lines NPS 2 to NPS 4 (DN 50 to DN 100) for Conventional Air-Conditioning Applications: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.
- C. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.
- D. Safety-Relief-Valve Discharge Piping: Schedule 40, black-steel and wrought-steel fittings with welded joints.
- E. Safety-Relief-Valve Discharge Piping:
 - 1. NPS 1-1/2 (DN 40) and Smaller: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.
 - 2. NPS 4 (DN 100): Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.

3.2 PIPING APPLICATIONS FOR REFRIGERANT R-407C

- A. Suction Lines NPS 1-1/2 (DN 40) and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.
- B. Suction Lines NPS 2 to NPS 4 (DN 50 to DN 100) for Conventional Air-Conditioning Applications: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.
- C. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.
- D. Safety-Relief-Valve Discharge Piping: Schedule 40, black-steel and wrought-steel fittings with welded joints.
- E. Safety-Relief-Valve Discharge Piping: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with soldered joints.
- F. Safety-Relief-Valve Discharge Piping:
 - 1. NPS 1 (DN 25) and Smaller: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.
 - 2. NPS 1-1/4 to NPS 2 (DN 32 to DN 50): Copper, Type K (A), annealed- or drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.
 - 3. NPS 4 (DN 100): Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with soldered joints.

3.3 PIPING APPLICATIONS FOR REFRIGERANT R-410A

- A. Suction Lines NPS 1-1/2 (DN 40) and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.
- B. Suction Lines NPS 2 to NPS 3-1/2 (DN 50 to DN 90) for Conventional Air-Conditioning Applications: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.
- C. Suction Lines NPS 4 (DN 100) for Conventional Air-Conditioning Applications: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with soldered joints.
- D. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type ACR, annealed- or drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.
- E. Safety-Relief-Valve Discharge Piping: Copper, Type ACR, annealed- or drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.

3.4 VALVE AND SPECIALTY APPLICATIONS

- Install diaphragm packless valves in suction and discharge lines of compressor. A.
- Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are B. not an integral part of valves and strainers.
- C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.
- Except as otherwise indicated, install diaphragm packless valves on inlet and outlet side of filter dryers. D.
- E. Install a full-sized, three-valve bypass around filter dryers.
- F. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.
- Install thermostatic expansion valves as close as possible to distributors on evaporators. G.
 - 1. Install valve so diaphragm case is warmer than bulb.
 - 2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
 - If external equalizer lines are required, make connection where it will reflect suction-line pressure 3. at bulb location.
- Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-H. relief-valve discharge line to outside according to ASHRAE 15.
- I. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.
- J. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for device being protected:
 - 1. Solenoid valves.
 - 2. Thermostatic expansion valves.
 - Hot-gas bypass valves. 3.
 - Compressor. 4.
- K. Install filter dryers in liquid line between compressor and thermostatic expansion valve, and in the suction line at the compressor.
- Install receivers sized to accommodate pump-down charge. L.
- M. Install flexible connectors at compressors.

PIPING INSTALLATION 3.5

- Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; A. indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- В. Install refrigerant piping according to ASHRAE 15.
- C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

Section 232300

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

Refrigerant Piping Page 8 of 12 Hanney & Associates Architects

- F. Install piping adjacent to machines to allow service and maintenance.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Refer to Section 230900 "Instrumentation and Control for HVAC" and Section 230993 "Sequence of Operations for HVAC Controls" for solenoid valve controllers, control wiring, and sequence of operation.
- K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 083113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.
- M. Install refrigerant piping in protective conduit where installed belowground.
- N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- O. Slope refrigerant piping as follows:
 - 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 - 2. Install horizontal suction lines with a uniform slope downward to compressor.
 - 3. Install traps and double risers to entrain oil in vertical runs.
 - 4. Liquid lines may be installed level.
- P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- Q. Before installation of steel refrigerant piping, clean pipe and fittings using the following procedures:
 - 1. Shot blast the interior of piping.
 - 2. Remove coarse particles of dirt and dust by drawing a clean, lintless cloth through tubing by means of a wire or electrician's tape.
 - 3. Draw a clean, lintless cloth saturated with trichloroethylene through the tube or pipe. Continue this procedure until cloth is not discolored by dirt.
 - 4. Draw a clean, lintless cloth, saturated with compressor oil, squeezed dry, through the tube or pipe to remove remaining lint. Inspect tube or pipe visually for remaining dirt and lint.
 - 5. Finally, draw a clean, dry, lintless cloth through the tube or pipe.
 - 6. Safety-relief-valve discharge piping is not required to be cleaned but is required to be open to allow unrestricted flow.
- R. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
- S. Identify refrigerant piping and valves according to Section 230553 "Identification for HVAC Piping and Equipment."
- T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- U. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

V. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.6 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.
- D. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 - 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 - 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.
- F. Threaded Joints: Thread steel pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry-seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Steel pipe can be threaded, but threaded joints must be seal brazed or seal welded.
- H. Welded Joints: Construct joints according to AWS D10.12/D10.12M.
- I. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.7 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor products are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet (6 m) long.
 - 2. Roller hangers and spring hangers for individual horizontal runs 20 feet (6 m) or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet (6 m) or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1/2 (DN 15): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 2. NPS 5/8 (DN 18): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 3. NPS 1 (DN 25): Maximum span, 72 inches (1800 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 4. NPS 1-1/4 (DN 32): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
 - 5. NPS 1-1/2 (DN 40): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
 - 6. NPS 2 (DN 50): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).

- 7. NPS 2-1/2 (DN 65): Maximum span, 108 inches (2700 mm); minimum rod size, 3/8 inch (9.5 mm).
- 8. NPS 3 (DN 80): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (9.5 mm).
- 9. NPS 4 (DN 100): Maximum span, 12 feet (3.7 m); minimum rod size, 1/2 inch (13 mm).
- D. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 2 (DN 50): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (9.5 mm).
 - 2. NPS 2-1/2 (DN 65): Maximum span, 11 feet (3.4 m); minimum rod size, 3/8 inch (9.5 mm).
 - NPS 3 (DN 80): Maximum span, 12 feet (3.7 m); minimum rod size, 3/8 inch (9.5 mm).
 NPS 4 (DN 100): Maximum span, 14 feet (4.3 m); minimum rod size, 1/2 inch (13 mm).
- E. Support multifloor vertical runs at least at each floor.

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections:
 - 1. Comply with ASME B31.5, Chapter VI.
 - 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 - 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.
 - b. System shall maintain test pressure at the manifold gage throughout duration of test.
 - c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 - d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.9 SYSTEM CHARGING

- A. Charge system using the following procedures:
 - 1. Install core in filter dryers after leak test but before evacuation.
 - 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers (67 Pa). If vacuum holds for 12 hours, system is ready for charging.
 - 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig (14 kPa).
 - 4. Charge system with a new filter-dryer core in charging line.

3.10 ADJUSTING

- A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.
- B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.
- C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.
- D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 - 1. Open shutoff valves in condenser water circuit.
 - 2. Verify that compressor oil level is correct.
 - 3. Open compressor suction and discharge valves.

- 4. Open refrigerant valves except bypass valves that are used for other purposes.
- 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.
- E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

End of Section 232300

SECTION 233113

METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Single-wall rectangular ducts and fittings.
 - 2. Single-wall round and flat-oval ducts and fittings spiral duct.
 - 3. Double-wall round and flat-oval ducts and fittings spiral duct.
 - 4. High efficiency takeoffs (HETO).
 - 5. Sheet metal materials.
 - 6. Duct liner.
 - 7. Sealants and gaskets.
 - 8. Hangers and supports.
 - 9. Seismic-restraint devices.
- B. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Duct product data.
 - 2. Liners and adhesives.
 - 3. Sealants and gaskets.
 - 4. Hangers and supports.

B. LEED Submittals:

- 1. Product Data for Prerequisite IEQ 1: Documentation indicating that duct systems comply with ASHRAE 62.1, Section 5 "Systems and Equipment."
- 2. Product Data for Prerequisite EA 2: Documentation indicating that duct systems comply with ASHRAE/IESNA 90.1, Section 6.4.4 "HVAC System Construction and Insulation."
- 3. Leakage Test Report for Prerequisite EA 2: Documentation of work performed for compliance with ASHRAE/IESNA 90.1, Section 6.4.4.2.2 "Duct Leakage Tests."
- 4. Duct-Cleaning Test Report for Prerequisite IEQ 1: Documentation of work performed for compliance with ASHRAE 62.1, Section 7.2.4 "Ventilation System Start-up."
- 5. Product Data for Credit IEQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content.
- 6. Laboratory Test Reports for Credit IEQ 4: For adhesives and sealants, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Shop Drawings:

- 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
- 2. Factory- and shop-fabricated ducts and fittings.
- 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
- 4. Elevation of top of ducts.
- 5. Dimensions of main duct runs from building grid lines.
- 6. Fittings.
- 7. Reinforcement and spacing.
- 8. Seam and joint construction.
- 9. Penetrations through fire-rated and other partitions.
- 10. Equipment installation based on equipment being used on Project.
- 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
- 12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to 1/4" scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which duct will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Penetrations of smoke barriers and fire-rated construction.
 - 6. Items penetrating finished ceiling including the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Perimeter moldings.
- B. Welding certificates.
- C. Field quality-control reports.

1.5 OUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports.
 - 3. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-up."

Metal Ducts Page 2 of 18 Section 233113

D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible." NOTE: Adjustable elbows will be allowed. All joints must be sealed. NOTE: Adjustable elbows will be allowed. All joints
- E. Exposed ductwork shall be free of defects and constructed of paint lock sheet metal.

2.2 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS - SPIRAL DUCT

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide spiral duct products by one of the following:
 - a. Lindab Inc.
 - b. McGill AirFlow LLC.
 - c. SEMCO Incorporated.
 - d. Sheet Metal Connectors, Inc.
 - e. Spiral Manufacturing Co., Inc.
 - f. Wichita Sheet Metal.
- B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).
- C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches (1524 mm) in Diameter: Flanged.
- D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-

Metal Ducts Page 3 of 18 Section 233113

pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

- 1. Fabricate round ducts larger than 90 inches (2286 mm) in diameter with butt-welded longitudinal seams
- 2. Fabricate flat-oval ducts larger than 72 inches (1830 mm) in width (major dimension) with butt-welded longitudinal seams.
- E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- F. Exposed ductwork shall be free of defects and constructed of paint lock sheet metal.

2.3 DOUBLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS - SPIRAL DUCT

- A. <u>Manufacturers</u>: Subject to compliance with requirements, provide spiral duct products by one of the following:
 - 1. Lindab Inc.
 - 2. McGill AirFlow LLC.
 - 3. <u>SEMCO Incorporated</u>.
 - 4. <u>Sheet Metal Connectors, Inc.</u>
 - 5. Wichita Sheet Metal.
- B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension) of the inner duct.
- C. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on static-pressure class unless otherwise indicated.
 - 1. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - a. Transverse Joints in Ducts Larger Than 60 Inches (1524 mm) in Diameter: Flanged.
 - 2. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - a. Fabricate round ducts larger than 90 inches (2286 mm) in diameter with butt-welded longitudinal seams.
 - b. Fabricate flat-oval ducts larger than 72 inches (1830 mm) in width (major dimension) with butt-welded longitudinal seams.
 - 3. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

- D. Inner Duct: Minimum 0.028-inch (0.7-mm) perforated galvanized sheet steel having 3/32-inch- (2.4-mm-) diameter perforations, with overall open area of 23 percent.
- E. Interstitial Insulation: Minimum 1.0-inch (or greater if noted on plans) fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F (0.039 W/m x K) at 75 deg F (24 deg C) mean temperature.
 - 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 - 3. Coat insulation with antimicrobial coating.
 - 4. Cover insulation with film that meet flame and smoke spread requirements. Locate against perforated face no fibers in air stream complying with UL 181, Class 1.
- F. Exposed ductwork shall be free of defects and constructed of paint lock sheet metal.

2.4 HIGH EFFICIENCY TAKEOFFS (HETO)

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Wichita Sheet Metal.
 - 2. Lindab, Inc.
 - 3. McGill Airflow, LLC.
 - 4. SEMCO, Inc.
 - 5. Sheet Metal Connectors, Inc.
 - 6. Ductmate Industries, Inc.
- B. General Requirements: Galvanized steel, stainless steel or aluminum construction with thickness matching required ductwork construction.
- C. Construct in accordance with SMACNA HVAC Duct Construction Standards Metal and Flexible, Third Edition 2005, Chapter 4, Figure 4-6.
- D. Rectangular opening with flange and neoprene gasket; 45 degree slope on the body.
- E. Any volume dampers provided with HETO shall meet the requirements of manual volume dampers specified in this section.

2.5 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60 (Z180).
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. PVC-Coated, Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60 (Z180).
 - 2. Minimum Thickness for Factory-Applied PVC Coating: 4 mils (0.10 mm) thick on sheet metal surface of ducts and fittings exposed to corrosive conditions, and minimum 1 mil (0.025 mm) thick on opposite surface.
 - 3. Coating Materials: Acceptable to authorities having jurisdiction for use on ducts listed and labeled by an NRTL for compliance with UL 181, Class 1.

Metal Ducts Page 5 of 18 Section 233113

- D. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.
- E. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.
- F. Aluminum Sheets: Comply with ASTM B 209 (ASTM B 209M) Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.
- G. Factory- or Shop-Applied Antimicrobial Coating:
 - 1. Apply to the surface of sheet metal that will form the interior surface of the duct. An untreated clear coating shall be applied to the exterior surface.
 - 2. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 - 3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested according to ASTM D 3363.
 - 4. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smokedeveloped index of 50 when tested according to UL 723; certified by an NRTL.
 - 5. Shop-Applied Coating Color: Black.
 - 6. Antimicrobial coating on sheet metal is not required for duct containing liner treated with antimicrobial coating.
- H. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- I. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

2.6 DUCT LINER

- A. Rectangular duct sizes called out on plans are clear inside dimensions. Increase duct size as required to accommodate liner. See below for specific ducts requiring liner and those with wrap.
 - 1. Supply ductwork: 1" duct liner. Applied entire length.
 - 2. Return ductwork: 1" duct liner. Applied entire length.
 - 3. Exhaust ductwork: 1" duct liner. Apply insulation from fan back down the duct for a distance of 20'-0" in all directions. Apply in all branches if multiple branches occur near the fan.
 - 4. DOAS Supply ductwork: 1½" duct wrap. Applied Entire length. See Duct Insulation Specification Section 23 07 13 for requirements.
 - 5. DOAS Exhaust/Return ductwork: 1½" duct wrap. Apply insulation from fan discharge to exterior discharge at louver or roof hood. See Duct Insulation Specification Section 23 07 13 for requirements.
 - 6. VAV primary air supply ductwork: 1½" duct wrap. Applied entire length. See Duct Insulation Specification Section 23 07 13 for requirements.
 - 7. Outdoor air ductwork: 1½" duct wrap. Applied entire length. See Duct Insulation Specification Section 23 07 13 for requirements.
- B. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

Metal Ducts Page 6 of 18 Section 233113

- a. CertainTeed Corporation; Insulation Group.
- b. Johns Manville.
- c. Knauf Insulation.
- d. Owens Corning.
- 2. Maximum Thermal Conductivity:
 - a. Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F (0.039 W/m x K) at 75 deg F (24 deg C) mean temperature.
 - b. Type II, Rigid: 0.23 Btu x in./h x sq. ft. x deg F (0.033 W/m x K) at 75 deg F (24 deg C) mean temperature.
- 3. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
- 4. Solvent or Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
 - a. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - b. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Flexible Elastomeric Duct Liner: Preformed, cellular, closed-cell, sheet materials complying with ASTM C 534, Type II, Grade 1; and with NFPA 90A or NFPA 90B.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Aeroflex USA Inc.
 - b. Armacell LLC.
 - c. Rubatex International, LLC
 - 2. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smokedeveloped index of 50 when tested according to UL 723; certified by an NRTL.
 - 3. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
 - a. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59. Subpart D (EPA Method 24).
 - b. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- D. Natural-Fiber Duct Liner: 85 percent cotton, 10 percent borate, and 5 percent polybinding fibers, treated with a microbial growth inhibitor and complying with NFPA 90A or NFPA 90B.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Bonded Logic, Inc.</u>
 - b. Reflectix Inc.
 - 2. Maximum Thermal Conductivity: 0.24 Btu x in./h x sq. ft. x deg F (0.034 W/m x K) at75 deg F (24 deg C) mean temperature when tested according to ASTM C 518.

Metal Ducts Page 7 of 18 Section 233113

- 3. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to ASTM E 84; certified by an NRTL.
- 4. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
 - a. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - b. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

E. Insulation Pins and Washers:

- 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch (38-mm) galvanized carbon-steel washer.
- 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick galvanized steel; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
- F. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."
 - 1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
 - 2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
 - 3. Butt transverse joints without gaps, and coat joint with adhesive.
 - 4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
 - 5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
 - 6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm (12.7 m/s).
 - 7. Secure liner with mechanical fasteners 4 inches (100 mm) from corners and at intervals not exceeding 12 inches (300 mm) transversely; at 3 inches (75 mm) from transverse joints and at intervals not exceeding 18 inches (450 mm) longitudinally.
 - 8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 - a. Fan discharges.
 - b. Intervals of lined duct preceding unlined duct.
 - c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm (12.7 m/s) or where indicated.
 - 9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 - a. Sheet Metal Inner Duct Perforations: 3/32-inch (2.4-mm) diameter, with an overall open area of 23 percent.
 - 10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

Metal Ducts Page 8 of 18 Section 233113

2.7 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:
 - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 - 2. Tape Width: 4 inches (102 mm).
 - 3. Sealant: Modified styrene acrylic.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
 - 7. Service: Indoor and outdoor.
 - 8. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
 - 10. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 11. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- D. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
 - 6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- F. Round Duct Joint O-Ring Seals:

- 1. Seal shall provide maximum leakage class of 3cfm/100 sq. ft. at 1-inch wg (0.14 L/s per sq. m at 250 Pa) and shall be rated for 10-inch wg (2500-Pa) static-pressure class, positive or negative.
- 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
- 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.8 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1 (Table 5-1M), "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round and flat-oval ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch (25 mm), plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

Metal Ducts Page 10 of 18 Section 233113

- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches (38 mm).
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 ADDITIONAL INSTALLATION REQUIREMENTS FOR COMMERCIAL KITCHEN HOOD EXHAUST DUCT

- A. Install commercial kitchen hood exhaust ducts without dips and traps that may hold grease, and sloped a minimum of 2 percent to drain grease back to the hood.
- B. Install fire-rated access panel assemblies at each change in direction and at maximum intervals of 12 feet (3.7 m) in horizontal ducts, and at every floor for vertical ducts, or as indicated on Drawings. Locate access panel on top or sides of duct a minimum of 1-1/2 inches (38 mm) from bottom of duct.
- C. Do not penetrate fire-rated assemblies except as allowed by applicable building codes and authorities having jurisdiction.

3.4 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 2. Outdoor, Supply-Air Ducts: Seal Class A.
 - 3. Outdoor, Exhaust Ducts: Seal Class C.
 - 4. Outdoor, Return-Air Ducts: Seal Class C.
 - 5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg (500 Pa) and Lower: Seal Class B.
 - 6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg (500 Pa): Seal Class A.
 - 7. Unconditioned Space, Exhaust Ducts: Seal Class C.
 - 8. Unconditioned Space, Return-Air Ducts: Seal Class B.

Metal Ducts Page 11 of 18 Section 233113

- 9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg (500 Pa) and Lower: Seal Class C
- 10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg (500 Pa): Seal Class B.
- 11. Conditioned Space, Exhaust Ducts: Seal Class B.
- 12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches (100 mm) thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches (100 mm) thick.
 - 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1 (Table 5-1M), "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches (610 mm) of each elbow and within 48 inches (1200 mm) of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet (5 m).
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.6 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 PAINTING

- A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Painting shall be performed by Painting Contractor. Mechanical Contractor shall coordinate requirements with other trades.
- B. Paint exposed ductwork as directed by Architect.

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Ductwork Leakage Tests:

- 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." Submit a test report for each test. Tests shall be done by an Independent Test and Balance Agency.
- 2. Test the following systems:
 - a. Low Pressure Supply Duct: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 - b. High Pressure Supply Duct: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 - c. Return Ducts: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 - d. Exhaust Ducts: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 - e. Outdoor Air Ducts: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
- 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
- 4. Test for leaks before applying external insulation.
- 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
- 6. Give seven days' advance notice for testing.
- 7. Coordinate pressure test preparation requirements with Test and Balance Agency. Rework of ductwork to accommodate testing shall be at contractor's own expense.
- 8. If the duct does not meet the SMACNA leakage requirements, it shall be repaired and sealed and retested at the Contractor's expense. Furthermore all other like duct systems shall also be leak tested and sealed if required, all at the Contractor's own expense.
- C. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.
 - 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 - a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.
- D. Duct system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.9 DUCT CLEANING

- A. Clean new and existing duct system(s) before testing, adjusting, and balancing.
- B. Use service openings for entry and inspection.
 - 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.

Metal Ducts Page 13 of 18 Section 233113

- 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
- 3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:

- 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
- 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.
- D. Clean the following components by removing surface contaminants and deposits:
 - 1. Air outlets and inlets (registers, grilles, and diffusers).
 - 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 - 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 - 4. Coils and related components.
 - 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 - 6. Supply-air ducts, dampers, actuators, and turning vanes.
 - 7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:

- 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
- 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
- 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
- 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
- 5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
- 6. Provide drainage and cleanup for wash-down procedures.
- 7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.10 START UP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.11 DUCT SCHEDULE

- A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:
 - 1. Underground Ducts: Concrete-encased, PVC-coated, galvanized sheet steel with thicker coating on duct exterior.
- B. Supply Ducts:

- 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive 1-inch wg (250 Pa.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- 2. Ducts Connected to Constant-Volume Air-Handling Units:
 - a. Pressure Class: Positive 2-inch wg (500 Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
- 3. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 - a. Pressure Class: Positive 4-inch wg (1000 Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 3.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
- 4. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive 2-inch wg (500 Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.

C. Return Ducts:

- 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive or negative 1-inch wg (250 Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg (500 Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- 3. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg (500 Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.

D. Exhaust Ducts:

- 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 - a. Pressure Class: Negative 1-inch wg (250 Pa).
 - b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.

Metal Ducts Page 15 of 18 Section 233113

- 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg (500 Pa).
 - b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- 3. Ducts Connected to Commercial Kitchen Hoods: Comply with NFPA 96.
 - a. Exposed to View: Type 304, stainless-steel sheet, No. 4 finish.
 - b. Concealed: Type 304, stainless-steel sheet, No. 2D finish.
 - c. Welded seams and joints.
 - d. Pressure Class: Positive or negative 3-inch wg (750 Pa).
 - e. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
 - f. SMACNA Leakage Class: 3.
- 4. Ducts Connected to Dishwasher Hoods:
 - a. Type 304, stainless-steel sheet.
 - b. Exposed to View: No. 4 finish.
 - c. Concealed: No. 2D finish.
 - d. Welded seams and flanged joints with watertight EPDM gaskets.
 - e. Pressure Class: Positive or negative 2-inch wg (500 Pa).
 - f. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
 - g. SMACNA Leakage Class: 3.
- 5. Ducts Connected to Fans Exhausting Laboratory and Process (ASHRAE 62.1, Class 3 and 4) Air:
 - a. Type 316, stainless-steel sheet.
 - 1) Exposed to View: No. 4 finish.
 - 2) Concealed: No. 2B finish.
 - b. PVC-coated, galvanized sheet steel with thicker coating on duct interior.
 - c. Pressure Class: Positive or negative 4-inch wg (1000 Pa).
 - d. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
 - e. SMACNA Leakage Class: 3.
- 6. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg (500 Pa).
 - b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- E. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive or negative 1-inch wg (250 Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
 - 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg (500 Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.

Metal Ducts Page 16 of 18 Section 233113

- d. SMACNA Leakage Class for Round and Flat Oval: 12.
- 3. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg (500 Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- F. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel
 - 2. PVC-Coated Ducts:
 - a. Exposed to Airstream: Match duct material.
 - b. Not Exposed to Airstream: Match duct material.
 - 3. Stainless-Steel Ducts:
 - a. Exposed to Airstream: Match duct material.
 - b. Not Exposed to Airstream: Match duct material.
 - 4. Aluminum Ducts: Aluminum.
- G. Liner:

Note: Refer to drawings. Specific areas/locations may require additional thicknesses. These thicknesses are noted on plans where different from this specification.

- 1. Supply Air Ducts: Fibrous glass, Type I, 1 inch (25 mm) thick.
- 2. Return Air Ducts: Fibrous glass, Type I, 1 inch (25 mm) thick.
- 3. Exhaust Air Ducts: Fibrous glass, Type I, 1 inch (25 mm) thick.
- 4. Supply Fan Plenums: Fibrous glass, Type II, 2 inch (50 mm) thick.
- 5. Return- and Exhaust-Fan Plenums: Fibrous glass, Type II, 2 inches (50 mm) thick.
- 6. Transfer Ducts: Fibrous glass, Type I, 1 inch (25 mm) thick.
- H. Double-Wall Duct Interstitial Insulation:
 - 1. Supply Air Ducts: 1" inch (25 mm) thick.
 - 2. Return Air Ducts: 1 inch (25 mm) thick.
 - 3. Exhaust Air Ducts: 1 inch (25 mm) thick.
- I. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm (5 m/s) or Lower:
 - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 - 2) Mitered Type RE 4 without vanes.
 - b. Velocity 1000 to 1500 fpm (5 to 7.6 m/s):
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 - c. Velocity 1500 fpm (7.6 m/s) or Higher:

Metal Ducts Page 17 of 18 Section 233113

- 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
- 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
- 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm (5 m/s) or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm (5 to 7.6 m/s): 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 - 3) Velocity 1500 fpm (7.6 m/s) or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 - 4) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches (305 mm) and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches (356 mm) and Larger in Diameter: Standing seam or Welded.
- J. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
 - 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1500 fpm (5 to 7.6 m/s) or Lower: Conical tap.
 - b. Velocity 1500 fpm (7.6 m/s) or Higher: 45-degree lateral.

End of Section 233113

Metal Ducts Page 18 of 18 Section 233113

SECTION 232300

REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes refrigerant piping used for air-conditioning applications.
- B. Contractor shall refer to refrigerant equipment manufacturer for recommendations and requirements.

1.3 PERFORMANCE REQUIREMENTS

- A. Line Test Pressure for Refrigerant R-134a:
 - 1. Suction Lines for Air-Conditioning Applications: 115 psig (793 kPa).
 - 2. Suction Lines for Heat-Pump Applications: 225 psig (1551 kPa).
 - 3. Hot-Gas and Liquid Lines: 225 psig (1551 kPa).
- B. Line Test Pressure for Refrigerant R-407C:
 - 1. Suction Lines for Air-Conditioning Applications: 230 psig (1586 kPa).
 - 2. Suction Lines for Heat-Pump Applications: 380 psig (2620 kPa).
 - 3. Hot-Gas and Liquid Lines: 380 psig (2620 kPa).
- C. Line Test Pressure for Refrigerant R-410A:
 - 1. Suction Lines for Air-Conditioning Applications: 300 psig (2068 kPa).
 - 2. Suction Lines for Heat-Pump Applications: 535 psig (3689 kPa).
 - 3. Hot-Gas and Liquid Lines: 535 psig (3689 kPa).

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop, based on manufacturer's test data, for the following:
 - 1. Thermostatic expansion valves.
 - 2. Solenoid valves.
 - 3. Hot-gas bypass valves.
 - 4. Filter dryers.
 - 5. Strainers.
 - 6. Pressure-regulating valves.
- B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.
 - 1. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and

Refrigerant Piping Page 1 of 12 Section 232300

length of piping to ensure proper operation and compliance with warranties of connected equipment.

1.5 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Field quality-control test reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Welding & Brazing: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
- B. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.8 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

1.9 COORDINATION

A. Coordinate size and location of roof curbs, equipment supports, and roof penetrations. These items are specified in Section 077200 "Roof Accessories."

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Copper Tube: ASTM B 88, Type K or L (ASTM B 88M, Type A or B)
- B. Wrought-Copper Fittings: ASME B16.22.
- C. Wrought-Copper Unions: ASME B16.22.
- D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
- E. Brazing Filler Metals: AWS A5.8.
- F. Flexible Connectors:
 - 1. Body: Tin-bronze bellows with woven, flexible, tinned-bronze-wire-reinforced protective jacket.
 - 2. End Connections: Socket ends.
 - 3. Offset Performance: Capable of minimum 3/4-inch (20-mm) misalignment in minimum 7-inch- (180-mm-) long assembly.
 - 4. Pressure Rating: Factory test at minimum 500 psig (3450 kPa).
 - 5. Maximum Operating Temperature: 250 deg F (121 deg C).

2.2 STEEL PIPE AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; Type, Grade, and wall thickness as selected in Part 3 piping applications articles.
- B. Wrought-Steel Fittings: ASTM A 234/A 234M, for welded joints.

Refrigerant Piping Page 2 of 12 Section 232300

- C. Steel Flanges and Flanged Fittings: ASME B16.5, steel, including bolts, nuts, and gaskets, bevelwelded end connection, and raised face.
- D. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

E. Flanged Unions:

- 1. Body: Forged-steel flanges for NPS 1 to NPS 1-1/2 (DN 25 to DN 40) and ductile iron for NPS 2 to NPS 3 (DN 50 to DN 80). Apply rust-resistant finish at factory.
- 2. Gasket: Fiber asbestos free.
- 3. Fasteners: Four plated-steel bolts, with silicon bronze nuts. Apply rust-resistant finish at factory.
- 4. End Connections: Brass tailpiece adapters for solder-end connections to copper tubing.
- 5. Offset Performance: Capable of minimum 3/4-inch (20-mm) misalignment in minimum 7-inch- (180-mm-) long assembly.
- 6. Pressure Rating: Factory test at minimum 400 psig (2760 kPa).
- 7. Maximum Operating Temperature: 330 deg F (165 deg C).

F. Flexible Connectors:

- 1. Body: Stainless-steel bellows with woven, flexible, stainless-steel-wire-reinforced protective jacket.
- 2. End Connections:
 - a. NPS 2 (DN 50) and Smaller: With threaded-end connections.
 - b. NPS 2-1/2 (DN 65) and Larger: With flanged-end connections.
- 3. Offset Performance: Capable of minimum 3/4-inch (20-mm) misalignment in minimum 7-inch- (180-mm-) long assembly.
- 4. Pressure Rating: Factory test at minimum 500 psig (3450 kPa).
- 5. Maximum Operating Temperature: 250 deg F (121 deg C).

2.3 VALVES AND SPECIALTIES

A. Diaphragm Packless Valves:

- 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
- 2. Diaphragm: Phosphor bronze and stainless steel with stainless-steel spring.
- 3. Operator: Rising stem and hand wheel.
- 4. Seat: Nylon.
- 5. End Connections: Socket, union, or flanged.
- 6. Working Pressure Rating: 500 psig (3450 kPa).
- 7. Maximum Operating Temperature: 275 deg F (135 deg C).

B. Packed-Angle Valves:

- 1. Body and Bonnet: Forged brass or cast bronze.
- 2. Packing: Molded stem, back seating, and replaceable under pressure.
- 3. Operator: Rising stem.
- 4. Seat: Nonrotating, self-aligning polytetrafluoroethylene.
- 5. Seal Cap: Forged-brass or valox hex cap.
- 6. End Connections: Socket, union, threaded, or flanged.
- 7. Working Pressure Rating: 500 psig (3450 kPa).
- 8. Maximum Operating Temperature: 275 deg F (135 deg C).

C. Check Valves:

- 1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
- 2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
- 3. Piston: Removable polytetrafluoroethylene seat.
- 4. Closing Spring: Stainless steel.
- 5. Manual Opening Stem: Seal cap, plated-steel stem, and graphite seal.
- 6. End Connections: Socket, union, threaded, or flanged.
- 7. Maximum Opening Pressure: 0.50 psig (3.4 kPa).
- 8. Working Pressure Rating: 500 psig (3450 kPa).
- 9. Maximum Operating Temperature: 275 deg F (135 deg C).

D. Service Valves:

- 1. Body: Forged brass with brass cap including key end to remove core.
- 2. Core: Removable ball-type check valve with stainless-steel spring.
- 3. Seat: Polytetrafluoroethylene.
- 4. End Connections: Copper spring.
- 5. Working Pressure Rating: 500 psig (3450 kPa).
- E. Solenoid Valves: Comply with ARI 760 and UL 429; listed and labeled by an NRTL.
 - 1. Body and Bonnet: Plated steel.
 - 2. Solenoid Tube, Plunger, Closing Spring, and Seat Orifice: Stainless steel.
 - 3. Seat: Polytetrafluoroethylene.
 - 4. End Connections: Threaded.
 - 5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch (16-GRC) conduit adapter, and 24 V ac coil.
 - 6. Working Pressure Rating: 400 psig (2760 kPa).
 - 7. Maximum Operating Temperature: 240 deg F (116 deg C).
 - 8. Manual operator.
- F. Safety Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
 - 1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
 - 2. Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Seat Disc: Polytetrafluoroethylene.
 - 4. End Connections: Threaded.
 - 5. Working Pressure Rating: 400 psig (2760 kPa).
 - 6. Maximum Operating Temperature: 240 deg F (116 deg C).
- G. Thermostatic Expansion Valves: Comply with ARI 750.
 - 1. Body, Bonnet, and Seal Cap: Forged brass or steel.
 - 2. Diaphragm, Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Packing and Gaskets: Non-asbestos.
 - 4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
 - 5. Suction Temperature: 40 deg F (4.4 deg C).
 - 6. Superheat: Adjustable.
 - 7. Reverse-flow option (for heat-pump applications).
 - 8. End Connections: Socket, flare, or threaded union.
 - 9. Working Pressure Rating: 700 psig (4820 kPa).
- H. Hot-Gas Bypass Valves: Comply with UL 429; listed and labeled by an NRTL.
 - 1. Body, Bonnet, and Seal Cap: Ductile iron or steel.
 - 2. Diaphragm, Piston, Closing Spring, and Seat Insert: Stainless steel.

Refrigerant Piping
Hanney & Associates Architects

- 3. Packing and Gaskets: Non-asbestos.
- 4. Solenoid Tube, Plunger, Closing Spring, and Seat Orifice: Stainless steel.
- 5. Seat: Polytetrafluoroethylene.
- 6. Equalizer: Internal.
- 7. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch (16-GRC) conduit adapter, and 24 V ac coil.
- 8. End Connections: Socket.
- 9. Throttling Range: Maximum 5 psig (34 kPa).
- 10. Working Pressure Rating: 500 psig (3450 kPa).
- 11. Maximum Operating Temperature: 240 deg F (116 deg C).

I. Straight-Type Strainers:

- 1. Body: Welded steel with corrosion-resistant coating.
- 2. Screen: 100-mesh stainless steel.
- 3. End Connections: Socket or flare.
- 4. Working Pressure Rating: 500 psig (3450 kPa).
- 5. Maximum Operating Temperature: 275 deg F (135 deg C).

J. Angle-Type Strainers:

- 1. Body: Forged brass or cast bronze.
- 2. Drain Plug: Brass hex plug.
- 3. Screen: 100-mesh monel.
- 4. End Connections: Socket or flare.
- 5. Working Pressure Rating: 500 psig (3450 kPa).
- 6. Maximum Operating Temperature: 275 deg F (135 deg C).

K. Moisture/Liquid Indicators:

- 1. Body: Forged brass.
- 2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
- 3. Indicator: Color coded to show moisture content in ppm.
- 4. Minimum Moisture Indicator Sensitivity: Indicate moisture above 60 ppm.
- 5. End Connections: Socket or flare.
- 6. Working Pressure Rating: 500 psig (3450 kPa).
- 7. Maximum Operating Temperature: 240 deg F (116 deg C).

L. Replaceable-Core Filter Dryers: Comply with ARI 730.

- 1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets.
- 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
- 3. Desiccant Media: Activated alumina.
- 4. Designed for reverse flow (for heat-pump applications).
- 5. End Connections: Socket.
- 6. Access Ports: NPS 1/4 (DN 8) connections at entering and leaving sides for pressure differential measurement.
- 7. Maximum Pressure Loss: 2 psig (14 kPa).
- 8. Working Pressure Rating: 500 psig (3450 kPa).
- 9. Maximum Operating Temperature: 240 deg F (116 deg C).

M. Permanent Filter Dryers: Comply with ARI 730.

1. Body and Cover: Painted-steel shell.

Refrigerant Piping Page 5 of 12 Section 232300

- 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
- 3. Desiccant Media: Activated alumina.
- 4. Designed for reverse flow (for heat-pump applications).
- 5. End Connections: Socket.
- 6. Access Ports: NPS 1/4 (DN 8) connections at entering and leaving sides for pressure differential measurement.
- 7. Maximum Pressure Loss: 2 psig (14 kPa).
- 8. Working Pressure Rating: 500 psig (3450 kPa).
- 9. Maximum Operating Temperature: 240 deg F (116 deg C).

N. Mufflers:

- 1. Body: Welded steel with corrosion-resistant coating.
- 2. End Connections: Socket or flare.
- 3. Working Pressure Rating: 500 psig (3450 kPa).
- 4. Maximum Operating Temperature: 275 deg F (135 deg C).
- O. Receivers: Comply with ARI 495.
 - 1. Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
 - 2. Comply with UL 207; listed and labeled by an NRTL.
 - 3. Body: Welded steel with corrosion-resistant coating.
 - 4. Tappings: Inlet, outlet, liquid level indicator, and safety relief valve.
 - 5. End Connections: Socket or threaded.
 - 6. Working Pressure Rating: 500 psig (3450 kPa).
 - 7. Maximum Operating Temperature: 275 deg F (135 deg C).
- P. Liquid Accumulators: Comply with ARI 495.
 - 1. Body: Welded steel with corrosion-resistant coating.
 - 2. End Connections: Socket or threaded.
 - 3. Working Pressure Rating: 500 psig (3450 kPa).
 - 4. Maximum Operating Temperature: 275 deg F (135 deg C).

2.4 REFRIGERANTS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - 1. Atofina Chemicals, Inc.
 - 2. DuPont Company; Fluorochemicals Div.
 - 3. Honeywell, Inc.; Genetron Refrigerants.
 - 4. INEOS Fluor Americas LLC.
- C. ASHRAE 34, R-134a: Tetrafluoroethane.
- D. ASHRAE 34, R-407C: Difluoromethane/Pentafluoroethane/1,1,1,2-Tetrafluoroethane.
- E. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-134a

A. Suction Lines NPS 1-1/2 (DN 40) and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.

Refrigerant Piping
Hanney & Associates Architects

- B. Suction Lines NPS 2 to NPS 4 (DN 50 to DN 100) for Conventional Air-Conditioning Applications: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.
- C. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.
- D. Safety-Relief-Valve Discharge Piping: Schedule 40, black-steel and wrought-steel fittings with welded joints.
- E. Safety-Relief-Valve Discharge Piping:
 - 1. NPS 1-1/2 (DN 40) and Smaller: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.
 - 2. NPS 4 (DN 100): Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.

3.2 PIPING APPLICATIONS FOR REFRIGERANT R-407C

- A. Suction Lines NPS 1-1/2 (DN 40) and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.
- B. Suction Lines NPS 2 to NPS 4 (DN 50 to DN 100) for Conventional Air-Conditioning Applications: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.
- C. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.
- D. Safety-Relief-Valve Discharge Piping: Schedule 40, black-steel and wrought-steel fittings with welded joints.
- E. Safety-Relief-Valve Discharge Piping: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with soldered joints.
- F. Safety-Relief-Valve Discharge Piping:
 - 1. NPS 1 (DN 25) and Smaller: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.
 - 2. NPS 1-1/4 to NPS 2 (DN 32 to DN 50): Copper, Type K (A), annealed- or drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.
 - 3. NPS 4 (DN 100): Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with soldered joints.

3.3 PIPING APPLICATIONS FOR REFRIGERANT R-410A

- A. Suction Lines NPS 1-1/2 (DN 40) and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.
- B. Suction Lines NPS 2 to NPS 3-1/2 (DN 50 to DN 90) for Conventional Air-Conditioning Applications: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.
- C. Suction Lines NPS 4 (DN 100) for Conventional Air-Conditioning Applications: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with soldered joints.
- D. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type ACR, annealed- or drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.
- E. Safety-Relief-Valve Discharge Piping: Copper, Type ACR, annealed- or drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.

3.4 VALVE AND SPECIALTY APPLICATIONS

- Install diaphragm packless valves in suction and discharge lines of compressor. A.
- Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are B. not an integral part of valves and strainers.
- C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.
- Except as otherwise indicated, install diaphragm packless valves on inlet and outlet side of filter dryers. D.
- E. Install a full-sized, three-valve bypass around filter dryers.
- F. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.
- Install thermostatic expansion valves as close as possible to distributors on evaporators. G.
 - 1. Install valve so diaphragm case is warmer than bulb.
 - 2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
 - If external equalizer lines are required, make connection where it will reflect suction-line pressure 3. at bulb location.
- Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-H. relief-valve discharge line to outside according to ASHRAE 15.
- I. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.
- J. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for device being protected:
 - 1. Solenoid valves.
 - 2. Thermostatic expansion valves.
 - Hot-gas bypass valves. 3.
 - Compressor. 4.
- K. Install filter dryers in liquid line between compressor and thermostatic expansion valve, and in the suction line at the compressor.
- Install receivers sized to accommodate pump-down charge. L.
- M. Install flexible connectors at compressors.

PIPING INSTALLATION 3.5

- Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; A. indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- В. Install refrigerant piping according to ASHRAE 15.
- C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

Section 232300

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

Refrigerant Piping Page 8 of 12 Hanney & Associates Architects

- F. Install piping adjacent to machines to allow service and maintenance.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Refer to Section 230900 "Instrumentation and Control for HVAC" and Section 230993 "Sequence of Operations for HVAC Controls" for solenoid valve controllers, control wiring, and sequence of operation.
- K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 083113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.
- M. Install refrigerant piping in protective conduit where installed belowground.
- N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- O. Slope refrigerant piping as follows:
 - 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 - 2. Install horizontal suction lines with a uniform slope downward to compressor.
 - 3. Install traps and double risers to entrain oil in vertical runs.
 - 4. Liquid lines may be installed level.
- P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- Q. Before installation of steel refrigerant piping, clean pipe and fittings using the following procedures:
 - 1. Shot blast the interior of piping.
 - 2. Remove coarse particles of dirt and dust by drawing a clean, lintless cloth through tubing by means of a wire or electrician's tape.
 - 3. Draw a clean, lintless cloth saturated with trichloroethylene through the tube or pipe. Continue this procedure until cloth is not discolored by dirt.
 - 4. Draw a clean, lintless cloth, saturated with compressor oil, squeezed dry, through the tube or pipe to remove remaining lint. Inspect tube or pipe visually for remaining dirt and lint.
 - 5. Finally, draw a clean, dry, lintless cloth through the tube or pipe.
 - 6. Safety-relief-valve discharge piping is not required to be cleaned but is required to be open to allow unrestricted flow.
- R. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
- S. Identify refrigerant piping and valves according to Section 230553 "Identification for HVAC Piping and Equipment."
- T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- U. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

V. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.6 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.
- D. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 - 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 - 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.
- F. Threaded Joints: Thread steel pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry-seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Steel pipe can be threaded, but threaded joints must be seal brazed or seal welded.
- H. Welded Joints: Construct joints according to AWS D10.12/D10.12M.
- I. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.7 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor products are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet (6 m) long.
 - 2. Roller hangers and spring hangers for individual horizontal runs 20 feet (6 m) or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet (6 m) or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1/2 (DN 15): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 2. NPS 5/8 (DN 18): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 3. NPS 1 (DN 25): Maximum span, 72 inches (1800 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 4. NPS 1-1/4 (DN 32): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
 - 5. NPS 1-1/2 (DN 40): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
 - 6. NPS 2 (DN 50): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).

- 7. NPS 2-1/2 (DN 65): Maximum span, 108 inches (2700 mm); minimum rod size, 3/8 inch (9.5 mm).
- 8. NPS 3 (DN 80): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (9.5 mm).
- 9. NPS 4 (DN 100): Maximum span, 12 feet (3.7 m); minimum rod size, 1/2 inch (13 mm).
- D. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 2 (DN 50): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (9.5 mm).
 - 2. NPS 2-1/2 (DN 65): Maximum span, 11 feet (3.4 m); minimum rod size, 3/8 inch (9.5 mm).
 - NPS 3 (DN 80): Maximum span, 12 feet (3.7 m); minimum rod size, 3/8 inch (9.5 mm).
 NPS 4 (DN 100): Maximum span, 14 feet (4.3 m); minimum rod size, 1/2 inch (13 mm).
- E. Support multifloor vertical runs at least at each floor.

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections:
 - 1. Comply with ASME B31.5, Chapter VI.
 - 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 - 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.
 - b. System shall maintain test pressure at the manifold gage throughout duration of test.
 - c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 - d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.9 SYSTEM CHARGING

- A. Charge system using the following procedures:
 - 1. Install core in filter dryers after leak test but before evacuation.
 - 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers (67 Pa). If vacuum holds for 12 hours, system is ready for charging.
 - 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig (14 kPa).
 - 4. Charge system with a new filter-dryer core in charging line.

3.10 ADJUSTING

- A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.
- B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.
- C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.
- D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 - 1. Open shutoff valves in condenser water circuit.
 - 2. Verify that compressor oil level is correct.
 - 3. Open compressor suction and discharge valves.

- 4. Open refrigerant valves except bypass valves that are used for other purposes.
- 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.
- E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

End of Section 232300

SECTION 233113

METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Single-wall rectangular ducts and fittings.
 - 2. Single-wall round and flat-oval ducts and fittings spiral duct.
 - 3. Double-wall round and flat-oval ducts and fittings spiral duct.
 - 4. High efficiency takeoffs (HETO).
 - 5. Sheet metal materials.
 - 6. Duct liner.
 - 7. Sealants and gaskets.
 - 8. Hangers and supports.
 - 9. Seismic-restraint devices.
- B. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Duct product data.
 - 2. Liners and adhesives.
 - 3. Sealants and gaskets.
 - 4. Hangers and supports.

B. LEED Submittals:

- 1. Product Data for Prerequisite IEQ 1: Documentation indicating that duct systems comply with ASHRAE 62.1, Section 5 "Systems and Equipment."
- 2. Product Data for Prerequisite EA 2: Documentation indicating that duct systems comply with ASHRAE/IESNA 90.1, Section 6.4.4 "HVAC System Construction and Insulation."
- 3. Leakage Test Report for Prerequisite EA 2: Documentation of work performed for compliance with ASHRAE/IESNA 90.1, Section 6.4.4.2.2 "Duct Leakage Tests."
- 4. Duct-Cleaning Test Report for Prerequisite IEQ 1: Documentation of work performed for compliance with ASHRAE 62.1, Section 7.2.4 "Ventilation System Start-up."
- 5. Product Data for Credit IEQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content.
- 6. Laboratory Test Reports for Credit IEQ 4: For adhesives and sealants, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Shop Drawings:

- 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
- 2. Factory- and shop-fabricated ducts and fittings.
- 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
- 4. Elevation of top of ducts.
- 5. Dimensions of main duct runs from building grid lines.
- 6. Fittings.
- 7. Reinforcement and spacing.
- 8. Seam and joint construction.
- 9. Penetrations through fire-rated and other partitions.
- 10. Equipment installation based on equipment being used on Project.
- 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
- 12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to 1/4" scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which duct will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Penetrations of smoke barriers and fire-rated construction.
 - 6. Items penetrating finished ceiling including the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Perimeter moldings.
- B. Welding certificates.
- C. Field quality-control reports.

1.5 OUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports.
 - 3. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-up."

Metal Ducts Page 2 of 18 Section 233113

D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible." NOTE: Adjustable elbows will be allowed. All joints must be sealed. NOTE: Adjustable elbows will be allowed. All joints
- E. Exposed ductwork shall be free of defects and constructed of paint lock sheet metal.

2.2 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS - SPIRAL DUCT

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide spiral duct products by one of the following:
 - a. Lindab Inc.
 - b. McGill AirFlow LLC.
 - c. SEMCO Incorporated.
 - d. Sheet Metal Connectors, Inc.
 - e. Spiral Manufacturing Co., Inc.
 - f. Wichita Sheet Metal.
- B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).
- C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches (1524 mm) in Diameter: Flanged.
- D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-

Metal Ducts Page 3 of 18 Section 233113

pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

- 1. Fabricate round ducts larger than 90 inches (2286 mm) in diameter with butt-welded longitudinal seams
- 2. Fabricate flat-oval ducts larger than 72 inches (1830 mm) in width (major dimension) with butt-welded longitudinal seams.
- E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- F. Exposed ductwork shall be free of defects and constructed of paint lock sheet metal.

2.3 DOUBLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS - SPIRAL DUCT

- A. <u>Manufacturers</u>: Subject to compliance with requirements, provide spiral duct products by one of the following:
 - 1. Lindab Inc.
 - 2. McGill AirFlow LLC.
 - 3. <u>SEMCO Incorporated</u>.
 - 4. <u>Sheet Metal Connectors, Inc.</u>
 - 5. Wichita Sheet Metal.
- B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension) of the inner duct.
- C. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on static-pressure class unless otherwise indicated.
 - 1. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - a. Transverse Joints in Ducts Larger Than 60 Inches (1524 mm) in Diameter: Flanged.
 - 2. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - a. Fabricate round ducts larger than 90 inches (2286 mm) in diameter with butt-welded longitudinal seams.
 - b. Fabricate flat-oval ducts larger than 72 inches (1830 mm) in width (major dimension) with butt-welded longitudinal seams.
 - 3. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

- D. Inner Duct: Minimum 0.028-inch (0.7-mm) perforated galvanized sheet steel having 3/32-inch- (2.4-mm-) diameter perforations, with overall open area of 23 percent.
- E. Interstitial Insulation: Minimum 1.0-inch (or greater if noted on plans) fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F (0.039 W/m x K) at 75 deg F (24 deg C) mean temperature.
 - 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 - 3. Coat insulation with antimicrobial coating.
 - 4. Cover insulation with film that meet flame and smoke spread requirements. Locate against perforated face no fibers in air stream complying with UL 181, Class 1.
- F. Exposed ductwork shall be free of defects and constructed of paint lock sheet metal.

2.4 HIGH EFFICIENCY TAKEOFFS (HETO)

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Wichita Sheet Metal.
 - 2. Lindab, Inc.
 - 3. McGill Airflow, LLC.
 - 4. SEMCO, Inc.
 - 5. Sheet Metal Connectors, Inc.
 - 6. Ductmate Industries, Inc.
- B. General Requirements: Galvanized steel, stainless steel or aluminum construction with thickness matching required ductwork construction.
- C. Construct in accordance with SMACNA HVAC Duct Construction Standards Metal and Flexible, Third Edition 2005, Chapter 4, Figure 4-6.
- D. Rectangular opening with flange and neoprene gasket; 45 degree slope on the body.
- E. Any volume dampers provided with HETO shall meet the requirements of manual volume dampers specified in this section.

2.5 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60 (Z180).
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. PVC-Coated, Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60 (Z180).
 - 2. Minimum Thickness for Factory-Applied PVC Coating: 4 mils (0.10 mm) thick on sheet metal surface of ducts and fittings exposed to corrosive conditions, and minimum 1 mil (0.025 mm) thick on opposite surface.
 - 3. Coating Materials: Acceptable to authorities having jurisdiction for use on ducts listed and labeled by an NRTL for compliance with UL 181, Class 1.

Metal Ducts Page 5 of 18 Section 233113

- D. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.
- E. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.
- F. Aluminum Sheets: Comply with ASTM B 209 (ASTM B 209M) Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.
- G. Factory- or Shop-Applied Antimicrobial Coating:
 - 1. Apply to the surface of sheet metal that will form the interior surface of the duct. An untreated clear coating shall be applied to the exterior surface.
 - 2. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 - 3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested according to ASTM D 3363.
 - 4. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smokedeveloped index of 50 when tested according to UL 723; certified by an NRTL.
 - 5. Shop-Applied Coating Color: Black.
 - 6. Antimicrobial coating on sheet metal is not required for duct containing liner treated with antimicrobial coating.
- H. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- I. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

2.6 DUCT LINER

- A. Rectangular duct sizes called out on plans are clear inside dimensions. Increase duct size as required to accommodate liner. See below for specific ducts requiring liner and those with wrap.
 - 1. Supply ductwork: 1" duct liner. Applied entire length.
 - 2. Return ductwork: 1" duct liner. Applied entire length.
 - 3. Exhaust ductwork: 1" duct liner. Apply insulation from fan back down the duct for a distance of 20'-0" in all directions. Apply in all branches if multiple branches occur near the fan.
 - 4. DOAS Supply ductwork: 1½" duct wrap. Applied Entire length. See Duct Insulation Specification Section 23 07 13 for requirements.
 - 5. DOAS Exhaust/Return ductwork: 1½" duct wrap. Apply insulation from fan discharge to exterior discharge at louver or roof hood. See Duct Insulation Specification Section 23 07 13 for requirements.
 - 6. VAV primary air supply ductwork: 1½" duct wrap. Applied entire length. See Duct Insulation Specification Section 23 07 13 for requirements.
 - 7. Outdoor air ductwork: 1½" duct wrap. Applied entire length. See Duct Insulation Specification Section 23 07 13 for requirements.
- B. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

Metal Ducts Page 6 of 18 Section 233113

- a. CertainTeed Corporation; Insulation Group.
- b. Johns Manville.
- c. Knauf Insulation.
- d. Owens Corning.
- 2. Maximum Thermal Conductivity:
 - a. Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F (0.039 W/m x K) at 75 deg F (24 deg C) mean temperature.
 - b. Type II, Rigid: 0.23 Btu x in./h x sq. ft. x deg F (0.033 W/m x K) at 75 deg F (24 deg C) mean temperature.
- 3. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
- 4. Solvent or Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
 - a. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - b. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Flexible Elastomeric Duct Liner: Preformed, cellular, closed-cell, sheet materials complying with ASTM C 534, Type II, Grade 1; and with NFPA 90A or NFPA 90B.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Aeroflex USA Inc.
 - b. Armacell LLC.
 - c. Rubatex International, LLC
 - 2. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smokedeveloped index of 50 when tested according to UL 723; certified by an NRTL.
 - 3. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
 - a. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59. Subpart D (EPA Method 24).
 - b. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- D. Natural-Fiber Duct Liner: 85 percent cotton, 10 percent borate, and 5 percent polybinding fibers, treated with a microbial growth inhibitor and complying with NFPA 90A or NFPA 90B.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Bonded Logic, Inc.</u>
 - b. Reflectix Inc.
 - 2. Maximum Thermal Conductivity: 0.24 Btu x in./h x sq. ft. x deg F (0.034 W/m x K) at75 deg F (24 deg C) mean temperature when tested according to ASTM C 518.

Metal Ducts Page 7 of 18 Section 233113

- 3. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to ASTM E 84; certified by an NRTL.
- 4. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
 - a. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - b. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

E. Insulation Pins and Washers:

- 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch (38-mm) galvanized carbon-steel washer.
- 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick galvanized steel; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
- F. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."
 - 1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
 - 2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
 - 3. Butt transverse joints without gaps, and coat joint with adhesive.
 - 4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
 - 5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
 - 6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm (12.7 m/s).
 - 7. Secure liner with mechanical fasteners 4 inches (100 mm) from corners and at intervals not exceeding 12 inches (300 mm) transversely; at 3 inches (75 mm) from transverse joints and at intervals not exceeding 18 inches (450 mm) longitudinally.
 - 8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 - a. Fan discharges.
 - b. Intervals of lined duct preceding unlined duct.
 - c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm (12.7 m/s) or where indicated.
 - 9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 - a. Sheet Metal Inner Duct Perforations: 3/32-inch (2.4-mm) diameter, with an overall open area of 23 percent.
 - 10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

Metal Ducts Page 8 of 18 Section 233113

2.7 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:
 - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 - 2. Tape Width: 4 inches (102 mm).
 - 3. Sealant: Modified styrene acrylic.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
 - 7. Service: Indoor and outdoor.
 - 8. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
 - 10. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 11. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- D. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
 - 6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- F. Round Duct Joint O-Ring Seals:

- 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg (0.14 L/s per sq. m at 250 Pa) and shall be rated for 10-inch wg (2500-Pa) static-pressure class, positive or negative.
- 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
- 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.8 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1 (Table 5-1M), "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round and flat-oval ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch (25 mm), plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

Metal Ducts Page 10 of 18 Section 233113

- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches (38 mm).
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 ADDITIONAL INSTALLATION REQUIREMENTS FOR COMMERCIAL KITCHEN HOOD EXHAUST DUCT

- A. Install commercial kitchen hood exhaust ducts without dips and traps that may hold grease, and sloped a minimum of 2 percent to drain grease back to the hood.
- B. Install fire-rated access panel assemblies at each change in direction and at maximum intervals of 12 feet (3.7 m) in horizontal ducts, and at every floor for vertical ducts, or as indicated on Drawings. Locate access panel on top or sides of duct a minimum of 1-1/2 inches (38 mm) from bottom of duct.
- C. Do not penetrate fire-rated assemblies except as allowed by applicable building codes and authorities having jurisdiction.

3.4 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 2. Outdoor, Supply-Air Ducts: Seal Class A.
 - 3. Outdoor, Exhaust Ducts: Seal Class C.
 - 4. Outdoor, Return-Air Ducts: Seal Class C.
 - 5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg (500 Pa) and Lower: Seal Class B.
 - 6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg (500 Pa): Seal Class A.
 - 7. Unconditioned Space, Exhaust Ducts: Seal Class C.
 - 8. Unconditioned Space, Return-Air Ducts: Seal Class B.

Metal Ducts Page 11 of 18 Section 233113

- 9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg (500 Pa) and Lower: Seal Class C
- 10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg (500 Pa): Seal Class B.
- 11. Conditioned Space, Exhaust Ducts: Seal Class B.
- 12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches (100 mm) thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches (100 mm) thick.
 - 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1 (Table 5-1M), "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches (610 mm) of each elbow and within 48 inches (1200 mm) of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet (5 m).
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.6 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 PAINTING

- A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Painting shall be performed by Painting Contractor. Mechanical Contractor shall coordinate requirements with other trades.
- B. Paint exposed ductwork as directed by Architect.

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Ductwork Leakage Tests:

- 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." Submit a test report for each test. Tests shall be done by an Independent Test and Balance Agency.
- 2. Test the following systems:
 - Low Pressure Supply Duct: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 - b. High Pressure Supply Duct: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 - c. Return Ducts: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 - d. Exhaust Ducts: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 - e. Outdoor Air Ducts: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
- 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
- 4. Test for leaks before applying external insulation.
- 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
- 6. Give seven days' advance notice for testing.
- 7. Coordinate pressure test preparation requirements with Test and Balance Agency. Rework of ductwork to accommodate testing shall be at contractor's own expense.
- 8. If the duct does not meet the SMACNA leakage requirements, it shall be repaired and sealed and retested at the Contractor's expense. Furthermore all other like duct systems shall also be leak tested and sealed if required, all at the Contractor's own expense.
- C. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.
 - 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 - a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.
- D. Duct system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.9 DUCT CLEANING

- A. Clean new and existing duct system(s) before testing, adjusting, and balancing.
- B. Use service openings for entry and inspection.
 - 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.

Metal Ducts Page 13 of 18 Section 233113

- 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
- 3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:

- 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
- 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.
- D. Clean the following components by removing surface contaminants and deposits:
 - 1. Air outlets and inlets (registers, grilles, and diffusers).
 - 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 - 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 - 4. Coils and related components.
 - 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 - 6. Supply-air ducts, dampers, actuators, and turning vanes.
 - 7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:

- 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
- 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
- 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
- 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
- 5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
- 6. Provide drainage and cleanup for wash-down procedures.
- 7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.10 START UP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.11 DUCT SCHEDULE

- A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:
 - 1. Underground Ducts: Concrete-encased, PVC-coated, galvanized sheet steel with thicker coating on duct exterior.
- B. Supply Ducts:

- 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive 1-inch wg (250 Pa.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- 2. Ducts Connected to Constant-Volume Air-Handling Units:
 - a. Pressure Class: Positive 2-inch wg (500 Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
- 3. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 - a. Pressure Class: Positive 4-inch wg (1000 Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 3.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
- 4. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive 2-inch wg (500 Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.

C. Return Ducts:

- 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive or negative 1-inch wg (250 Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg (500 Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- 3. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg (500 Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.

D. Exhaust Ducts:

- 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 - a. Pressure Class: Negative 1-inch wg (250 Pa).
 - b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.

Metal Ducts Page 15 of 18 Section 233113

- 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg (500 Pa).
 - b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- 3. Ducts Connected to Commercial Kitchen Hoods: Comply with NFPA 96.
 - a. Exposed to View: Type 304, stainless-steel sheet, No. 4 finish.
 - b. Concealed: Type 304, stainless-steel sheet, No. 2D finish.
 - c. Welded seams and joints.
 - d. Pressure Class: Positive or negative 3-inch wg (750 Pa).
 - e. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
 - f. SMACNA Leakage Class: 3.
- 4. Ducts Connected to Dishwasher Hoods:
 - a. Type 304, stainless-steel sheet.
 - b. Exposed to View: No. 4 finish.
 - c. Concealed: No. 2D finish.
 - d. Welded seams and flanged joints with watertight EPDM gaskets.
 - e. Pressure Class: Positive or negative 2-inch wg (500 Pa).
 - f. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
 - g. SMACNA Leakage Class: 3.
- 5. Ducts Connected to Fans Exhausting Laboratory and Process (ASHRAE 62.1, Class 3 and 4) Air:
 - a. Type 316, stainless-steel sheet.
 - 1) Exposed to View: No. 4 finish.
 - 2) Concealed: No. 2B finish.
 - b. PVC-coated, galvanized sheet steel with thicker coating on duct interior.
 - c. Pressure Class: Positive or negative 4-inch wg (1000 Pa).
 - d. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
 - e. SMACNA Leakage Class: 3.
- 6. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg (500 Pa).
 - b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- E. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive or negative 1-inch wg (250 Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
 - 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg (500 Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.

Metal Ducts Page 16 of 18 Section 233113

- d. SMACNA Leakage Class for Round and Flat Oval: 12.
- 3. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg (500 Pa).
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- F. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel
 - 2. PVC-Coated Ducts:
 - a. Exposed to Airstream: Match duct material.
 - b. Not Exposed to Airstream: Match duct material.
 - 3. Stainless-Steel Ducts:
 - a. Exposed to Airstream: Match duct material.
 - b. Not Exposed to Airstream: Match duct material.
 - 4. Aluminum Ducts: Aluminum.
- G. Liner:

Note: Refer to drawings. Specific areas/locations may require additional thicknesses. These thicknesses are noted on plans where different from this specification.

- 1. Supply Air Ducts: Fibrous glass, Type I, 1 inch (25 mm) thick.
- 2. Return Air Ducts: Fibrous glass, Type I, 1 inch (25 mm) thick.
- 3. Exhaust Air Ducts: Fibrous glass, Type I, 1 inch (25 mm) thick.
- 4. Supply Fan Plenums: Fibrous glass, Type II, 2 inch (50 mm) thick.
- 5. Return- and Exhaust-Fan Plenums: Fibrous glass, Type II, 2 inches (50 mm) thick.
- 6. Transfer Ducts: Fibrous glass, Type I, 1 inch (25 mm) thick.
- H. Double-Wall Duct Interstitial Insulation:
 - 1. Supply Air Ducts: 1" inch (25 mm) thick.
 - 2. Return Air Ducts: 1 inch (25 mm) thick.
 - 3. Exhaust Air Ducts: 1 inch (25 mm) thick.
- I. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm (5 m/s) or Lower:
 - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 - 2) Mitered Type RE 4 without vanes.
 - b. Velocity 1000 to 1500 fpm (5 to 7.6 m/s):
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 - c. Velocity 1500 fpm (7.6 m/s) or Higher:

- 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
- 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
- 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm (5 m/s) or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm (5 to 7.6 m/s): 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 - 3) Velocity 1500 fpm (7.6 m/s) or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 - 4) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches (305 mm) and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches (356 mm) and Larger in Diameter: Standing seam or Welded.
- J. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
 - 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1500 fpm (5 to 7.6 m/s) or Lower: Conical tap.
 - b. Velocity 1500 fpm (7.6 m/s) or Higher: 45-degree lateral.

End of Section 233113

Metal Ducts Page 18 of 18 Section 233113

SECTION 233300

AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Backdraft and pressure relief dampers.
- 2. Barometric relief dampers.
- 3. Manual volume dampers.
- 4. Control dampers.
- 5. Fire dampers.
- 6. Ceiling radiation dampers.
- 7. Smoke dampers.
- 8. Combination fire and smoke dampers.
- 9. Corridor fire/smoke dampers.
- 10. Flange connectors.
- 11. Duct silencers.
- 12. Turning vanes.
- 13. Remote damper operators.
- 14. Duct-mounted access doors.
- 15. Flexible connectors.
- 16. Flexible ducts.
- 17. Duct accessory hardware.
- 18. Acoustic Panels and Enclosures.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.

B. LEED Submittals:

- 1. Product Data for Prerequisite IEQ 1: Documentation indicating that units comply with ASHRAE 62.1, Section 5 "Systems and Equipment."
- 2. Product Data for Prerequisite EA 2: Documentation indicating that duct insulation R-values comply with tables in ASHRAE/IESNA 90.1, Section 6 "Heating, Ventilating, and Air Conditioning."
- C. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 - 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:

- a. Special fittings.
- b. Manual volume damper installations.
- c. Control-damper installations.
- d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
- e. Duct security bars.
- f. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.
- B. Source quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

- A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60 (Z180).
 - 2. Exposed-Surface Finish: Mill phosphatized.
- B. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a No. 2 finish for concealed ducts and No. 4 finish for exposed ducts.
- C. Aluminum Sheets: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
- D. Extruded Aluminum: Comply with ASTM B 221 (ASTM B 221M), Alloy 6063, Temper T6.
- E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

F. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. American Warming and Ventilating; a division of Mestek, Inc.
 - 3. Cesco Products; a division of Mestek, Inc.
 - 4. Greenheck Fan Corporation.
 - 5. <u>Nailor Industries Inc.</u>
 - 6. Pottorff.
 - 7. Ruskin Company.
- B. Description: Gravity balanced.
- C. Maximum Air Velocity: 1000 fpm (5.1 m/s).
- D. Maximum System Pressure: 1-inch wg (0.25 kPa).
- E. Frame: Hat-shaped, 0.05-inch- (1.3-mm-) thick, galvanized sheet steel, with welded corners or mechanically attached and mounting flange.
- F. Blades: Multiple single-piece blades, center pivoted, maximum 6-inch (150-mm) width, 0.025-inch-(0.6-mm-) thick, roll-formed aluminum with sealed edges.
- G. Blade Action: Parallel.
- H. Blade Seals: Neoprene, mechanically locked.
- I. Blade Axles:
 - 1. Material: Nonferrous metal.
 - 2. Diameter: 0.20 inch (5 mm).
- J. Tie Bars and Brackets: Aluminum.
- K. Return Spring: Adjustable tension.
- L. Bearings: Steel ball or synthetic pivot bushings.
- M. Accessories:
 - 1. Adjustment device to permit setting for varying differential static pressure.
 - 2. Counterweights and spring-assist kits for vertical airflow installations.
 - 3. Electric actuators.
 - 4. Chain pulls.
 - 5. Screen Mounting: Front mounted in sleeve.
 - a. Sleeve Thickness: 20 gage (1.0 mm) minimum.
 - b. Sleeve Length: 6 inches (152 mm) minimum.
 - 6. Screen Mounting: Rear mounted.
 - 7. Screen Material: Galvanized steel.
 - 8. Screen Type: Bird.
 - 9. 90-degree stops.

2.4 BAROMETRIC RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Air Balance Inc.; a division of Mestek, Inc.
- 2. American Warming and Ventilating; a division of Mestek, Inc.
- 3. Cesco Products; a division of Mestek, Inc.
- 4. Greenheck Fan Corporation.
- 5. Nailor Industries Inc.
- 6. Pottorff.
- 7. Ruskin Company.
- B. Suitable for horizontal or vertical mounting.
- C. Maximum Air Velocity: 1000 fpm (5.1 m/s).
- D. Maximum System Pressure: 2-inch wg (0.5 kPa).
- E. Frame: Hat-shaped, 0.05-inch- (1.3-mm-) thick, galvanized sheet steel, with welded corners or mechanically attached and mounting flange.
- F. Blades:
 - 1. Multiple, 0.025-inch- (0.6-mm-) thick, roll-formed aluminum.
 - 2. Maximum Width: 6 inches (150 mm).
 - 3. Action: Parallel.
 - 4. Balance: Gravity.
 - 5. Eccentrically pivoted.
- G. Blade Seals: Neoprene.
- H. Blade Axles: Galvanized steel.
- I. Tie Bars and Brackets:
 - 1. Material: Aluminum.
 - 2. Rattle free with 90-degree stop.
- J. Return Spring: Adjustable tension.
- K. Bearings: Synthetic or Stainless steel or Bronze.
- L. Accessories:
 - 1. Flange on intake.
 - 2. Adjustment device to permit setting for varying differential static pressures.

2.5 MANUAL VOLUME DAMPERS

- A. Manual volume dampers shall be provided at each duct run-out and branch ducts for the purpose of balancing air flows. Where dampers are located above hard inaccessible ceilings or soffits, the Contractor shall provide and install cable operated remote dampers as needed and specified in this section. Where grilles, registers, and diffusers contain an integral opposed blade damper the manual damper at the run-out is not required.
- B. Standard, Steel, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Air Balance Inc.; a division of Mestek, Inc.
 - b. American Warming and Ventilating; a division of Mestek, Inc.
 - c. McGill AirFlow LLC.
 - d. <u>Nailor Industries Inc</u>.

- e. Pottorff.
- f. Ruskin Company.
- g. Greenheck.
- 2. Standard leakage rating, with linkage outside airstream.
- 3. Suitable for horizontal or vertical applications.
- 4. Frames:
 - a. Frame: Hat-shaped, 0.094-inch- (2.4-mm-) thick, galvanized sheet steel.
 - b. Mitered and welded corners.
 - c. Flanges for attaching to walls and flangeless frames for installing in ducts.
- 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized-steel, 0.064 inch (1.62 mm) thick.
- 6. Blade Axles: Galvanized steel.
- 7. Bearings:
 - a. Oil-impregnated bronze.
 - b. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 8. Tie Bars and Brackets: Galvanized steel.
- C. Standard, Aluminum, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Air Balance Inc.</u>; a division of Mestek, Inc.
 - b. <u>American Warming and Ventilating</u>; a division of Mestek, Inc.
 - c. McGill AirFlow LLC.
 - d. Nailor Industries Inc.
 - e. Pottorff.
 - f. Ruskin Company.
 - 2. Standard leakage rating, with linkage outside airstream.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames: Hat-shaped, 0.10-inch- (2.5-mm-) thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Roll-Formed Aluminum Blades: 0.10-inch- (2.5-mm-) thick aluminum sheet.
 - e. Extruded-Aluminum Blades: 0.050-inch- (1.2-mm-) thick extruded aluminum.
 - 6. Blade Axles: Galvanized steel.
 - 7. Bearings:
 - a. Oil-impregnated bronze.
 - b. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

- 8. Tie Bars and Brackets: Aluminum.
- D. Low-Leakage, Steel, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Air Balance Inc.; a division of Mestek, Inc.
 - b. American Warming and Ventilating; a division of Mestek, Inc.
 - c. McGill AirFlow LLC.
 - d. Nailor Industries Inc.
 - e. <u>Pottorff</u>.
 - f. Ruskin Company.
 - 2. Comply with AMCA 500-D testing for damper rating.
 - 3. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
 - 4. Suitable for horizontal or vertical applications.
 - 5. Frames:
 - a. Hat shaped.
 - b. 0.094-inch- (2.4-mm-) thick, galvanized sheet steel.
 - c. Mitered and welded corners.
 - d. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 6. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized, roll-formed steel, 0.064 inch (1.62 mm) thick.
 - 7. Blade Axles: Galvanized steel.
 - 8. Bearings:
 - a. Oil-impregnated bronze.
 - b. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 9. Blade Seals: Neoprene.
 - 10. Jamb Seals: Cambered stainless steel.
 - 11. Tie Bars and Brackets: Galvanized steel.
 - 12. Accessories:
 - a. Include locking device to hold single-blade dampers in a fixed position without vibration.
- E. Low-Leakage, Aluminum, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Air Balance Inc.; a division of Mestek, Inc.</u>
 - b. American Warming and Ventilating; a division of Mestek, Inc.
 - c. McGill AirFlow LLC.
 - d. Nailor Industries Inc.
 - e. Pottorff.
 - f. Ruskin Company.

- 2. Comply with AMCA 500-D testing for damper rating.
- 3. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
- 4. Suitable for horizontal or vertical applications.
- 5. Frames: Hat-shaped, 0.10-inch- (2.5-mm-) thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
- 6. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Roll-Formed Aluminum Blades: 0.10-inch- (2.5-mm-) thick aluminum sheet.
 - d. Extruded-Aluminum Blades: 0.050-inch- (1.2-mm-) thick extruded aluminum.
- 7. Blade Axles: Galvanized steel.
- 8. Bearings:
 - a. Oil-impregnated bronze.
 - b. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 9. Blade Seals: Neoprene.
- 10. Jamb Seals: Cambered stainless steel.
- 11. Tie Bars and Brackets: Galvanized steel.
- 12. Accessories:
 - a. Include locking device to hold single-blade dampers in a fixed position without vibration.

F. Jackshaft:

- 1. Size: 0.5-inch (13-mm) diameter.
- 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
- 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

G. Damper Hardware:

- 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch- (2.4-mm-) thick zinc-plated steel, and a 3/4-inch (19-mm) hexagon locking nut.
- 2. Include center hole to suit damper operating-rod size.
- 3. Include elevated platform for insulated duct mounting.

2.6 CONTROL DAMPERS

- A. Manufacturers: Subject to compliance with requirements, [provide products by one of the following:
 - 1. American Warming and Ventilating; a division of Mestek, Inc.
 - 2. Arrow United Industries; a division of Mestek, Inc.
 - 3. Cesco Products; a division of Mestek, Inc.
 - 4. Greenheck Fan Corporation.
 - 5. McGill AirFlow LLC.
 - 6. Nailor Industries Inc.
 - 7. Pottorff.
 - 8. Ruskin Company.

- B. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage. Unit shall leak less than 3cfm/sq. ft. at 1" of static pressure.
- C. Frames:
 - 1. Hat shaped.
 - 2. 0.094-inch- (2.4-mm-) thick, galvanized sheet steel.
 - 3. Mitered and welded corners.
- D. Blades:
 - 1. Multiple blade with maximum blade width of 6 inches (152 mm).
 - 2. Parallel- and opposed-blade design.
 - 3. Galvanized-steel.
 - 4. 0.064 inch (1.62 mm) thick single skin or 0.0747-inch- (1.9-mm-) thick dual skin.
 - 5. Blade Edging: Closed-cell neoprene.
 - 6. Blade Edging: Inflatable seal blade edging, or replaceable rubber seals.
- E. Blade Axles: 1/2-inch- (13-mm-) diameter; galvanized steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 - 1. Operating Temperature Range: From minus 40 to plus 200 deg F (minus 40 to plus 93 deg C).
- F. Bearings:
 - 1. Oil-impregnated bronze.
 - 2. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 3. Thrust bearings at each end of every blade.

2.7 FIRE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. Arrow United Industries; a division of Mestek, Inc.
 - 3. Cesco Products; a division of Mestek, Inc.
 - 4. Greenheck Fan Corporation.
 - 5. Nailor Industries Inc.
 - 6. NCA Manufacturing, Inc.
 - 7. Pottorff.
 - 8. Prefco; Perfect Air Control, Inc.
 - 9. Ruskin Company.
- B. Type: Dynamic; rated and labeled according to UL 555 by an NRTL.
- C. Closing rating in ducts up to 4-inch wg (1-kPa) static pressure class and minimum 2000-fpm (10-m/s) velocity.
- D. Fire Rating: 1-1/2 and 3 hours.
- E. Frame: Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream; fabricated with roll-formed, 0.034-inch- (0.85-mm-) thick galvanized steel; with mitered and interlocking corners.
- F. Mounting Sleeve: Factory-installed, galvanized sheet steel.
 - 1. Minimum Thickness: 0.05 (1.3 mm) thick, as indicated, and of length to suit application.

- 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
- G. Mounting Orientation: Vertical or horizontal as indicated.
- H. Blades: Roll-formed, interlocking, 0.024-inch- (0.61-mm) thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- (0.85-mm-) thick, galvanized-steel blade connectors.
- I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.
- J. Heat-Responsive Device: Replaceable, 165 deg F (74 deg C) rated, fusible links.
- K. In addition to the fire dampers, shown and called out on the drawings provide additional $1\frac{1}{2}$ hour rated wall type Class "B" fire dampers as specified below to be installed where designated by the Engineer:
 - 1. (3) Each 12" Wide x 12" High
 - 2. (3) Each 18" Wide x 12" High

2.8 CEILING RADIATION DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Air Balance Inc.</u>; a division of Mestek, Inc.
 - 2. Cesco Products; a division of Mestek, Inc.
 - 3. <u>Nailor Industries Inc.</u>
 - 4. Pottorff.
 - 5. Prefco; Perfect Air Control, Inc.
 - 6. Ruskin Company.
- B. General Requirements:
 - 1. Labeled according to UL 555C by an NRTL.
 - 2. Comply with construction details for tested floor- and roof-ceiling assemblies as indicated in UL's "Fire Resistance Directory."
- C. Frame: Galvanized sheet steel, round or rectangular, style to suit ceiling construction.
- D. Blades: Galvanized sheet steel with refractory insulation.
- E. Heat-Responsive Device: Replaceable, 165 deg F (74 deg C) rated, fusible links.
- F. Fire Rating: 1 or 2 or 3 hours. Refer to Code Plan requirements.

2.9 SMOKE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. Cesco Products; a division of Mestek, Inc.
 - 3. Greenheck Fan Corporation.
 - 4. Nailor Industries Inc.
 - 5. Pottorff.
 - 6. Ruskin Company.
- B. General Requirements: Label according to UL 555S by an NRTL.
- C. Smoke Detector: Integral, factory wired for single-point connection.
- D. Frame: Hat-shaped, 0.094-inch- (2.4-mm-) thick, galvanized sheet steel, with welded corners and mounting flange.

Hanney & Associates Architects

Air Duct Accessories

- E. Blades: Roll-formed, horizontal, interlocking, 0.034-inch- (0.85-mm-) thick, galvanized sheet steel.
- F. Leakage: Class I.
- G. Rated pressure and velocity to exceed design airflow conditions.
- H. Mounting Sleeve: Factory-installed, 0.039-inch- (1.0-mm-) thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone caulking.
- I. Damper Motors: Two-position action.
- J. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections.
 - 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 - 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf (17 N x m) and breakaway torque rating of 150 in. x lbf (17 N x m).
 - 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F (minus 40 deg C).
 - 6. Nonspring-Return Motors: For dampers larger than 25 sq. ft. (2.3 sq. m), size motor for running torque rating of 150 in. x lbf (17 N x m) and breakaway torque rating of 300 in. x lbf (34 N x m).
 - 7. Electrical Connection: 115 V, single phase, 60 Hz.

K. Accessories:

- 1. Auxiliary switches for signaling, fan control or position indication.
- 2. Test and reset switches, remote mounted.
- L. In addition to the smoke dampers, shown and called out on the drawings provide additional 1 ½ hour rated wall type Class "B" fire dampers as specified below to be installed where designated by the Engineer.
 - 1. (3) Each 12" Wide x 12" High
 - 2. (3) Each 18" Wide x 12" High

2.10 COMBINATION FIRE AND SMOKE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Air Balance Inc.</u>; a division of Mestek, Inc.
 - 2. Cesco Products; a division of Mestek, Inc.
 - 3. Greenheck Fan Corporation.
 - 4. Nailor Industries Inc.
 - 5. <u>Pottorff</u>.
 - 6. Ruskin Company.
- B. Type: Dynamic; rated and labeled according to UL 555 and UL 555S by an NRTL.

- C. Closing rating in ducts up to 4-inch wg (1-kPa) static pressure class and minimum 2000-fpm (10-m/s) velocity.
- D. Fire Rating: 1-1/2 and 3 hours.
- E. Frame: Hat-shaped, 0.094-inch- (2.4-mm-) thick, galvanized sheet steel, with welded corners and mounting flange.
- F. Heat-Responsive Device: Electric resettable device and switch package, factory installed, rated.
- G. Smoke Detector: Integral, factory wired for single-point connection.
- H. Blades: Roll-formed, horizontal, interlocking, 0.063-inch- (1.6-mm-) thick, galvanized sheet steel.
- I. Leakage: Class I.
- J. Rated pressure and velocity to exceed design airflow conditions.
- K. Mounting Sleeve: Factory-installed, 0.039-inch- (1.0-mm-) thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone caulking.
- L. Master control panel for use in dynamic smoke-management systems.
- M. Damper Motors: Two-position action.
- N. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections.
 - 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 - 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf (17 N x m) and breakaway torque rating of 150 in. x lbf (17 N x m).
 - 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F (minus 40 deg C).
 - 6. Nonspring-Return Motors: For dampers larger than 25 sq. ft. (2.3 sq. m), size motor for running torque rating of 150 in. x lbf (17 N x m) and breakaway torque rating of 300 in. x lbf (34 N x m).
 - 7. Electrical Connection: 115 V, single phase, 60 Hz.

O. Accessories:

- 1. Auxiliary switches for signaling fan control or position indication.
- 2. Test and reset switches, remote mounted.
- P. In addition to the fire/smoke dampers, shown and called out on the drawings provide additional 1 ½ hour rated wall type Class "B" fire dampers as specified below to be installed where designated by the Engineer.
 - 1. (3) Each 12" Wide x 12" High
 - 2. (3) Each 18" Wide x 12" High

2.11 CORRIDOR FIRE/SMOKE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. Cesco Products; a division of Mestek Inc.
 - 3. Greenheck Fan Corporation.
 - 4. Nailor Industries Inc.
 - 5. Ruskin Company.
- B. Type: Dynamic rated and labeled according to UL 555 and UL 555S by an NRTL for dynamic operation. Static rated dampers are not acceptable.
- C. General Requirements: Label combination fire and smoke dampers according to UL 555 for 1-1/2-hour rating by NRTL.
- D. Heat-Responsive Device: Electrical resettable link and switch package, factory installed, rated.
- E. Frame: Multiple-blade type; fabricated with roll-formed, 0.034-inch- (0.85-mm-) thick galvanized steel; with mitered and interlocking corners.
- F. Blades: Roll-formed, horizontal, interlocking, 0.034-inch- (0.85-mm-) thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- (0.85-mm-) thick, galvanized-steel blade connectors.
- G. Mounting Sleeve: Factory-installed, 0.052-inch- (1.3-mm-) thick, galvanized sheet steel; length to suit wall or floor application.
- H. Damper Motors: Two-position action unless noted to have modulating action. Automatic reset after system test or power failure.
- I. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment".
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range about 1.0.
 - 2. Electrical Devices and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.
 - 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 - 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf (17 N x m) and breakaway torque rating of 150 in. x lbf (17 N x m).
 - 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F (minus 40 deg C).
 - 6. Nonspring-Return Motors: For dampers larger than 25 sq. ft. (2.3 sq. m), size motor for running torque rating of 150 in. x lbf (17 N x m) and breakaway torque rating of 300 in. x lbf (34 N x m).

J. Accessories:

1. Auxiliary switches for position indication when smoke dampers are part of an engineered smoke control system.

2.12 FLANGE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
- B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
- C. Material: Galvanized steel.
- D. Gauge and Shape: Match connecting ductwork.

2.13 DUCT SILENCERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Dynasonics</u>.
 - 2. Vibro-Acoustics.
 - 3. <u>Industrial Acoustics Company.</u>
 - 4. <u>Price</u>.
 - 5. Ruskin.
 - 6. Aerosonics.
 - 7. Industrial Noise Control, Inc.
 - 8. VAW Systems.
- B. General Requirements:
 - 1. Factory fabricated.
 - 2. Fire-Performance Characteristics: Adhesives, sealants, packing materials, and accessory materials shall have flame-spread index not exceeding 25 and smoke-developed index not exceeding 50 when tested according to ASTM E 84.
 - 3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

C. Shape:

- 1. Rectangular straight with splitters or baffles.
- 2. Round straight with center bodies or pods.
- 3. Rectangular elbow with splitters or baffles.
- 4. Round elbow with center bodies or pods.
- 5. Rectangular transitional with splitters or baffles.
- D. Rectangular Silencer Outer Casing: ASTM A 653/A 653M, G90 (Z275), galvanized sheet steel, 0.040 inch (1.02 mm) thick.
- E. Round Silencer Outer Casing: ASTM A 653/A 653M, G90 (Z275), galvanized sheet steel.
 - 1. Sheet Metal Thickness for Units up to 24 Inches (600 mm) in Diameter: 0.034 inch (0.85 mm) thick.
 - 2. Sheet Metal Thickness for Units 26 through 40 Inches (660 through 1000 mm) in Diameter: 0.040 inch (1.02 mm) thick.
 - 3. Sheet Metal Thickness for Units 42 through 52 Inches (1060 through 1300 mm) in Diameter: 0.05 inch (1.3 mm) thick.
 - 4. Sheet Metal Thickness for Units 54 through 60 Inches (1370 through 1500 mm) in Diameter: 0.064 inch (1.62 mm) thick.
- F. Inner Casing and Baffles: ASTM A 653/A 653M, G90 (Z275) galvanized sheet metal, 0.034 inch (0.85 mm) thick, and with 1/8-inch- (3-mm-) diameter perforations.

Air Duct Accessories Page 13 of 20 Section 233300

- G. Special Construction:
 - 1. Suitable for outdoor use.
 - 2. High transmission loss casings where scheduled on plans.
- H. Connection Sizes: Match connecting ductwork unless otherwise indicated.
- I. Principal Sound-Absorbing Mechanism:
 - 1. Controlled impedance membranes and broadly tuned resonators without absorptive media.
 - 2. Dissipative type with fill material.
 - a. Fill Material: Inert and vermin-proof fibrous material, packed under not less than 5 percent compression, Moisture-proof nonfibrous material.
 - b. Erosion Barrier: Polymer bag enclosing fill, and heat sealed before assembly.
 - 3. Lining: Glass Fiber Insulation.
- J. Fabricate silencers to form rigid units that will not pulsate, vibrate, rattle, or otherwise react to system pressure variations. Do not use mechanical fasteners for unit assemblies.
 - 1. Joints: Continuously welded or flanged connections.
 - 2. Suspended Units: Factory-installed suspension hooks or lugs attached to frame in quantities and spaced to prevent deflection or distortion.
 - 3. Reinforcement: Cross or trapeze angles for rigid suspension.
- K. Accessories:
 - 1. Factory-installed end caps to prevent contamination during shipping.
- L. Source Quality Control: Test according to latest ASTM E 477.
 - 1. Record acoustic ratings, including dynamic insertion loss and generated-noise power levels with an airflow of at least 2000-fpm (10-m/s) face velocity.
 - 2. Leak Test: Test units for airtightness at 200 percent of associated fan static pressure or 6-inch wg (1500-Pa) static pressure, whichever is greater.
- M. Capacities and Characteristics:
 - 1. Refer to Duct Silencer Schedule for additional information.

2.14 TURNING VANES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Duro Dyne Inc.
 - 3. Elgen Manufacturing.
 - 4. METALAIRE, Inc.
 - 5. SEMCO Incorporated.
- B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 - 1. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.

- C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
- D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."
- E. Vane Construction: Double wall.

2.15 REMOTE DAMPER OPERATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Pottorff.
 - 2. <u>Ventfabrics, Inc.</u>
 - 3. Young Regulator Company.
 - 4. <u>Metropolitan Air Technology</u>.
- B. Description: Cable system designed for remote manual damper adjustment.
- C. Tubing: Brass or Copper or Aluminum.
- D. Cable: Stainless steel.
- E. Wall/Ceiling-Box Mounting: Recessed.
- F. Wall/Ceiling-Box Cover-Plate: 1 inch diameter, nylon paintable.

2.16 DUCT-MOUNTED ACCESS DOORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Warming and Ventilating; a division of Mestek, Inc.
 - 2. Cesco Products; a division of Mestek, Inc.
 - 3. Ductmate Industries, Inc.
 - 4. Elgen Manufacturing.
 - 5. Flexmaster U.S.A., Inc.
 - 6. <u>Greenheck Fan Corporation</u>.
 - 7. McGill AirFlow LLC.
 - 8. Nailor Industries Inc.
 - 9. Pottorff.
- B. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 7-2 (7-2M), "Duct Access Doors and Panels," and 7-3, "Access Doors Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Vision panel.
 - d. Hinges and Latches: 1-by-1-inch (25-by-25-mm)butt or piano hinge and cam latches.
 - e. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches (300 mm) Square: No hinges and two sash locks.
 - b. Access Doors up to [18 Inches (460 mm)] Square: Two hinges and two sash locks.

Air Duct Accessories Page 15 of 20

- c. Access Doors up to 24 by 48 Inches (600 by 1200 mm): Three hinges and two compression latches with outside and inside handles.
- d. Access Doors Larger Than 24 by 48 Inches (600 by 1200 mm): Continuous and two compression latches with outside and inside handles.

C. Pressure Relief Access Door:

- 1. Door and Frame Material: Galvanized sheet steel.
- 2. Door: Double wall with insulation fill with metal thickness applicable for duct pressure class.
- 3. Operation: Open outward for positive-pressure ducts and inward for negative-pressure ducts.
- 4. Factory set at 3.0- to 8.0-inch wg (800 to 2000 Pa).
- 5. Doors close when pressures are within set-point range.
- 6. Hinge: Continuous piano.
- 7. Latches: Cam.
- 8. Seal: Neoprene or foam rubber.
- 9. Insulation Fill: 1-inch- (25-mm-) thick, fibrous-glass or polystyrene-foam board.

2.17 DUCT ACCESS PANEL ASSEMBLIES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Ductmate Industries, Inc.</u>
 - 2. Flame Gard, Inc.
 - 3. 3M.
 - 4. Firemaster.
- B. Labeled according to UL 1978 by an NRTL.
- C. Panel and Frame: Minimum thickness 0.0528-inch (1.3-mm) carbon steel.
- D. Fasteners: Carbon steel. Panel fasteners shall not penetrate duct wall.
- E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F (1093 deg C).
- F. Minimum Pressure Rating: 10-inch wg (2500 Pa), positive or negative.

2.18 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Duro Dyne Inc.
 - 3. Elgen Manufacturing.
 - 4. Ventfabrics, Inc.
- B. Materials: Flame-retardant or noncombustible fabrics.
- C. Coatings and Adhesives: Comply with UL 181, Class 1.
- D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches (89 mm) wide attached to two strips of 2-3/4-inch- (70-mm-) wide, 0.028-inch- (0.7-mm-) thick, galvanized sheet steel or 0.032-inch- (0.8-mm-) thick aluminum sheets. Provide metal compatible with connected ducts.
- E. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd. (880 g/sq. m).
 - 2. Tensile Strength: 480 lbf/inch (84 N/mm) in the warp and 360 lbf/inch (63 N/mm) in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).

- F. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 24 oz./sq. yd. (810 g/sq. m).
 - 2. Tensile Strength: 530 lbf/inch (93 N/mm) in the warp and 440 lbf/inch (77 N/mm) in the filling.
 - 3. Service Temperature: Minus 50 to plus 250 deg F (Minus 45 to plus 121 deg C).
- G. High-Temperature System, Flexible Connectors: Glass fabric coated with silicone rubber.
 - 1. Minimum Weight: 16 oz./sq. yd. (542 g/sq. m).
 - 2. Tensile Strength: 285 lbf/inch (50 N/mm) in the warp and 185 lbf/inch (32 N/mm) in the filling.
 - 3. Service Temperature: Minus 67 to plus 500 deg F (Minus 55 to plus 260 deg C).
- H. High-Corrosive-Environment System, Flexible Connectors: Glass fabric with chemical-resistant coating.
 - 1. Minimum Weight: 14 oz./sq. yd. (474 g/sq. m).
 - 2. Tensile Strength: 450 lbf/inch (79 N/mm) in the warp and 340 lbf/inch (60 N/mm) in the filling.
 - 3. Service Temperature: Minus 67 to plus 500 deg F (Minus 55 to plus 260 deg C).
- I. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 - 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 - 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 - 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch (6-mm) movement at start and stop.

2.19 FLEXIBLE DUCTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flexmaster U.S.A., Inc.
 - 2. McGill AirFlow LLC.
- B. Noninsulated, Flexible Duct: UL 181, Class 1, black polymer film supported by helically wound, spring-steel wire.
 - 1. Pressure Rating: 4-inch wg (1000 Pa) positive and 0.5-inch wg (125 Pa) negative.
 - 2. Maximum Air Velocity: 4000 fpm (20 m/s).
 - 3. Temperature Range: Minus 20 to plus 175 deg F (Minus 29 to plus 79 deg C).
- C. Insulated, Flexible Duct: UL 181, Class 1, black polymer film supported by helically wound, spring-steel wire; fibrous-glass insulation; aluminized vapor-barrier film.
 - 1. Pressure Rating: 4-inch wg (1000 Pa) positive and 0.5-inch wg (125 Pa) negative.
 - 2. Maximum Air Velocity: 4000 fpm (20 m/s).
 - 3. Temperature Range: Minus 20 to plus 175 deg F (Minus 29 to plus 79 deg C).
 - 4. Insulation R-Value: Comply with ASHRAE/IESNA 90.1.
- D. Flexible Duct Connectors:

- 1. Clamps: Nylon strap in sizes 3 through 18 inches (75 through 460 mm), to suit duct size.
- E. Do not use flexible ducts in exhaust or return air applications.

2.20 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit ductinsulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

2.21 ACOUSTIC PANELS AND ENCLOSURES

- A. Furnish and install Discharge Plenums Acoustic Panels and Enclosures of the sizes, configuration, and performance as described on plans and/or schedules. Enclosures will include, as required, acoustical panels, trims and mounting channels, sealant, hardware, doors and assembly drawings supplied by manufacturer for on site assembly by others.
- B. Panel performance characteristics, including transmission loss and absorption coefficient, shall be attained through testing in accordance with the ASTM E90 and ASTM C423 test standards.
- C. Manufacturer's performance data for dynamic insertion loss, generated noise and pressure drop shall be provided and shall be obtained in accordance with ASTM E90 and ASTM C423 test standards. Submittals shall include dimensions, openings, access door details, construction materials, material finishes, assembly instructions, and installation details.
- D. Panels shall be tongue and groove construction and shall consist of 18 gauge solid steel skin, 22 gauge perforated steel liner, 18 gauge full depth splitters spaced maximum of 16" apart, and absorptive acoustic fiberglass media.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Install fire, smoke, and combination fire/smoke dampers according to UL listing.

- 1. In addition to installing fire, smoke, and combination fire/smoke dampers as shown and called out on the drawings, the Contractor shall include in his bid the installation of the following additional fire dampers at locations designated by the Engineer:
 - a. (3) Each 12" Wide x 12" High
 - b. (3) Each 18" Wide x 12" High
- H. Install duct security bars. Construct duct security bars from 0.164-inch (4.18-mm)steel sleeve, continuously welded at all joints and 1/2-inch- (13-mm-) diameter steel bars, 6 inches (150 mm) o.c. in each direction in center of sleeve. Weld each bar to steel sleeve and each crossing bar. Weld 2-1/2-by-2-1/2-by-1/4-inch (63-by-63-by-6-mm) steel angle to 4 sides and both ends of sleeve. Connect duct security bars to ducts with flexible connections. Provide 12-by-12-inch (300-by-300-mm) hinged access panel with cam lock in duct in each side of sleeve.
- I. Connect ducts to duct silencers rigidly.
- J. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. On both sides of duct coils.
 - 2. Upstream from duct filters.
 - 3. At outdoor-air intakes and mixed-air plenums.
 - 4. At drain pans and seals.
 - 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 - 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 - 7. At each change in direction and at maximum 50-foot (15-m) spacing.
 - 8. Upstream from turning vanes.
 - 9. Upstream or downstream from duct silencers.
 - 10. Control devices requiring inspection.
 - 11. Elsewhere as indicated.
- K. Install access doors with swing against duct static pressure.
- L. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches (200 by 125 mm).
 - 2. Two-Hand Access: 12 by 6 inches (300 by 150 mm).
 - 3. Head and Hand Access: 18 by 10 inches (460 by 250 mm).
 - 4. Head and Shoulders Access: 21 by 14 inches (530 by 355 mm).
 - 5. Body Access: 25 by 14 inches (635 by 355 mm).
 - 6. Body plus Ladder Access: 25 by 17 inches (635 by 430 mm).
- M. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- N. Install flexible connectors to connect ducts to equipment.
- O. For fans developing static pressures of 5-inch wg (1250 Pa) and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- P. Connect terminal units to supply ducts directly. Do not use flexible ducts to change directions.
- Q. Connect diffusers or light troffer boots to ducts directly or with maximum 60-inch (1500-mm) lengths of flexible duct clamped or strapped in place.

- R. Connect flexible ducts to metal ducts with draw bands. Seal duct connection. Flexible ducts shall not be used in exhaust or return air applications.
- S. Install duct test holes where required for testing and balancing purposes.
- T. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch (6-mm) movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
 - 4. Inspect turning vanes for proper and secure installation.
 - 5. Operate remote damper operators to verify full range of movement of operator and damper.

End of Section 233300

SECTION 233423

HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Centrifugal roof ventilators.
 - 2. Centrifugal wall ventilators.
 - 3. Ceiling-mounted ventilators.
 - 4. In-line centrifugal fans.
 - 5. Propeller Fans.
 - 6. Ceiling Fans Ceiling Mounted Circulation Fans.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: For power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL ROOF VENTILATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. Loren Cook Company.
 - 3. PennBarry.
 - 4. Twin City Fan.
- B. Housing: Removable, spun-aluminum, dome top and outlet baffle; square, one-piece, aluminum base with venturi inlet cone.
 - 1. Upblast Units: Provide spun-aluminum discharge baffle to direct discharge air upward, with rain and snow drains and grease collector.
 - 2. Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.
- C. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.
- D. Belt Drives:

- 1. Resiliently mounted to housing.
- 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
- 3. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
- 4. Pulleys: Cast-iron, adjustable-pitch motor pulley.
- 5. Fan and motor isolated from exhaust airstream.
- E. Accessories (see schedules for additional information):
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.
 - 3. Bird Screens: Removable, 1/2-inch (13-mm) mesh, aluminum or brass wire.
 - 4. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.
 - 5. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.
- F. Roof Curbs: Contractor must coordinate roof construction type ie. metal building roof, bar joist etc. prior to shop drawing submittals. Pre-fabricated factory built; Galvanized steel; mitered and welded corners; 1-1/2-inch- (40-mm-) thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch (40-mm) wood nailer. Size as required to suit roof opening and fan base.
 - 1. Configuration: Built-in raised cant and mounting flange.
 - 2. Overall Height: 12 inches (300 mm).
 - 3. Sound Curb: Curb with sound-absorbing insulation.
 - 4. Pitch Mounting: Manufacture curb for roof slope.

2.2 CENTRIFUGAL WALL VENTILATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. Loren Cook Company.
 - 3. PennBarry.
 - 4. Twin City Fan.
- B. Housing: Heavy-gage, removable, spun-aluminum, dome top and outlet baffle; venturi inlet cone.
- C. Fan Wheel: Aluminum hub and wheel with backward-inclined blades.
- D. Belt Drives:
 - 1. Resiliently mounted to housing.
 - 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 - 3. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 - 4. Pulleys: Cast-iron, adjustable-pitch motor pulley.
 - 5. Fan and motor isolated from exhaust airstream.
- E. Accessories (see schedules for additional information:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through internal aluminum conduit.
 - 3. Bird Screens: Removable, 1/2-inch (13-mm) mesh, aluminum or brass wire.
 - 4. Wall Grille: Ring type for flush mounting.
 - 5. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in wall sleeve; factory set to close when fan stops.

6. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.

2.3 CEILING-MOUNTED VENTILATORS

- A. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Greenheck Fan Corporation</u>.
 - 2. <u>Loren Cook Company</u>.
 - 3. PennBarry.
 - 4. Twin City Fan.
- B. Housing: Steel, lined with acoustical insulation.
- C. Fan Wheel: Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel shall be removable for service.
- D. Grille: Plastic, louvered grille with flange on intake and thumbscrew attachment to fan housing.
- E. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-in.
- F. Accessories (see schedules for additional information):
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Manual Starter Switch: Single-pole rocker switch assembly with cover and pilot light.
 - 3. Time-Delay Switch: Assembly with single-pole rocker switch, timer, and cover plate.
 - 4. Motion Sensor: Motion detector with adjustable shutoff timer.
 - 5. Ceiling Radiation Damper: Fire-rated assembly with ceramic blanket, stainless-steel springs, and fusible link.
 - 6. Filter: Washable aluminum to fit between fan and grille.
 - 7. Isolation: Rubber-in-shear vibration isolators.
 - 8. Manufacturer's standard roof jack or wall cap, and transition fittings.

2.4 IN-LINE CENTRIFUGAL FANS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. Loren Cook Company.
 - 3. PennBarry.
 - 4. Twin City Fan.
- B. Housing: Split, spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.
- C. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing.
- D. Belt-Driven Units: Motor mounted on adjustable base, with adjustable sheaves, enclosure around belts within fan housing, and lubricating tubes from fan bearings extended to outside of fan housing.
- E. Fan Wheels: Aluminum, airfoil blades welded to aluminum hub.
- F. Accessories (see schedules for additional information):
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Volume-Control Damper: Manually operated with quadrant lock, located in fan outlet.
 - 3. Companion Flanges: For inlet and outlet duct connections.

- 4. Fan Guards: 1/2- by 1-inch (13- by 25-mm) mesh of galvanized steel in removable frame. Provide guard for inlet or outlet for units not connected to ductwork.
- 5. Motor and Drive Cover (Belt Guard): Epoxy-coated steel.

2.5 PROPELLER FANS

- A. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Greenheck Fan Corporation</u>.
 - 2. <u>Loren Cook Company</u>.
 - 3. PennBarry.
 - 4. <u>Twin City Fan</u>.
- B. Housing: Galvanized-steel sheet with flanged edges and integral orifice ring with baked-enamel finish coat applied after assembly.
- C. Steel Fan Wheels: Formed-steel blades riveted to heavy-gage steel spider bolted to cast-iron hub.
- D. Fan Wheel: Replaceable, cast or extruded-aluminum, airfoil blades fastened to cast-aluminum hub; factory set pitch angle of blades.
- E. Fan Drive: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing.

F. Fan Drive:

- 1. Resiliently mounted to housing.
- 2. Statically and dynamically balanced.
- 3. Selected for continuous operation at maximum rated fan speed and motor horsepower, with final alignment and belt adjustment made after installation.
- 4. Extend grease fitting to accessible location outside of unit.
- 5. Service Factor Based on Fan Motor Size: 1.4.
- 6. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
- 7. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 - a. Ball-Bearing Rating Life: ABMA 9, L₁₀ of 100,000 hours.
- 8. Pulleys: Cast iron with split, tapered bushing; dynamically balanced at factory.
- 9. Motor Pulleys: Adjustable pitch for use with motors through 5 hp; fixed pitch for use with larger motors. Select pulley so pitch adjustment is at the middle of adjustment range at fan design conditions.
- 10. Belts: Oil resistant, nonsparking, and nonstatic; matched sets for multiple belt drives.
- 11. Belt Guards: Fabricate of steel for motors mounted on outside of fan cabinet.
- G. Accessories (see schedules for additional information):
 - 1. Gravity Shutters: Aluminum blades in aluminum frame; interlocked blades with nylon bearings.
 - 2. Motor-Side Back Guard: Galvanized steel, complying with OSHA specifications, removable for maintenance.
 - 3. Wall Sleeve: Galvanized steel to match fan and accessory size.
 - 4. Weathershield Hood: Galvanized steel to match fan and accessory size.
 - 5. Weathershield Front Guard: Galvanized steel with expanded metal screen.
 - 6. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 7. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.

2.6 CEILING FANS – CEILING MOUNTED CIRCULATION FANS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. BAF Company
- B. Complete Unit: The fan shall be ETL certified and built pursuant to construction guidelines set forth by UL standards 507, 746C, 1004, 1917, and CSA standards 22.2 #0.4, 22.2 #0.17, 22.2 #0.113, 22.2 #0.100, 22.2 #0.156. The fan shall be designed to move an effective amount of air for cooling and destratification in commercial applications. The fan shall incorporate a direct drive system designed specifically for high volume, low speed fans to ensure silent operation. the sound levels from the fan operating at maximum speed shall not exceed 40 dBA (measured 20' or 6.1 m below the blades and 20' or 6.1 m horizontally from the center of the fan.)
- C. Airfoils: The fan shall be equipped with ten (10) high volume, low speed airfoils of precision extruded aluminum alloy. Each airfoil shall be of the high performance TEC design. The airfoils shall be connected by means of two (2) locking bolts per airfoil. The airfoils shall be connected to the hub and interlocked with stainless steel retainers. Airfoils shall be powder coated for color application as selected by the architect.
- D. Winglets: The fan shall be equipped with ten (10) TEC winglets designed to redirect outward airflow into downward airflow, thereby enhancing the efficiency and effectiveness of the fan. The winglets shall be die cast aluminum. A winglet shall be attached at the tip of each airfoil by means of a bolt. Winglets shall be powder coated for color application as selected by the architect.
- E. Trim: The fan shall be equipped with trim inserts that nest between the hub and the inner edge of the foil. The trim inserts (10 each) shall provide a cleaner fit between the airfoils and the hub to help reduce drag, turbulence and noise. Trim inserts shall be "traffic black."
- F. Motor: The fan motor shall be direct drive and shall operate from any voltage ranging from 100-240 VAC, 1 phase, and 50/60 Hz, without requiring adapters or customer selection. The motor shall be manufactured with a Class F insulation and be capable of continuous operation in -40°F to 104°F (-40°C to 40°C) ambient conditions. The motor shall be capable of modulating the fan speed from 0~100% without the use of a gearbox or other mechanical means of control.
- G. Hub: The fan hub shall be a single precision permanent mold casting of aluminum alloy for high strength and light weight. The hub shall be precision machined to achieve a well balanced and solid rotating assembly. The hub shall incorporate ten (10) safety pins made from aluminum that will secure the hub/airfoil assembly in case of shaft failure. The pins shall be attached to the body of the hub using bolts.
- H. Mounting System: The fan mounting system shall be designed for quick and secure installation from a structural support beam. All components in the mounting system shall be of welded construction using steel no less than 3/16" (0.5cm) thick and be powder coated for appearance and resistance to corrosion. All mounting bolts shall be SAE Grade 8 or equivalent and rated with a minimum tensile strength of 150,000 psi (1,034 MPa). As an option, mounting components may be colored as specified by the architect or owner.
- I. For mounting through ceiling media, a factory supplied escutcheon (or grommet) shall be provided to maintain a professional, finished installation.
- J. Safety Cables: The fan shall be equipped with upper and lower safety cables. The upper safety cable shall provide an additional means of securing the fan assembly to the building structure. The lower safety cable shall provide an additional means of securing the motor unit to the mounting system. All safety cables shall be ¼" (0.6cm) diameter and fabricated out of 7 X 19 stranded galvanized steel. The loops must be secured with swaged Nicopress fittings, pre-loaded and tested to 3,000 lb·f (13,345 N).
- K. Field construction of safety cables is not permitted.

- L. Controller: The controller shall be incorporated into the fan assembly. The controller shall be factory programmed to minimize starting and braking torques. the controller shall be housed in an enclosure to prevent accidental contact with the enclosed equipment and to prevent entry of unwanted substances.
- M. Wall Control: The fan shall be equipped with a remote wall control. The wall control shall be capable of mounting to a standard receptacle by means of mounting plate (which shall be included with the wall mounted device). The wall controller shall be equipped with a 1.8" (4.6cm) TFT-LCD screen and user interface for controlling the fan's direction, operation and speed. Communication with the fan drive and controller shall be by a standard, commercially available CAT-5 (or higher) Ethernet cable that is field installed and provided by the installer. A 5' (1.5m) 'patch cable' shall be provided to test and verify communication signals locally prior to connecting the remote connection cable.
- N. The wall control shall be equipped with a simple diagnostic program to identify faults in the system. Provisions must be made for retrieving fan operation and diagnostic data (fault messages) through the remote wall device.
- O. Warranty: The manufacturer shall replace any products or components defective in material or workmanship, free of charge to the customer (including transportation charges within the USA, F.O.B. Lexington, KY), pursuant to the complete terms and conditions of the BAF Non-Prorated Warranty in accordance to the following schedule:
 - 1. Airfoils Lifetime (Parts)
 - 2. Hub Lifetime (Parts)
 - 3. Motor 10 years (Parts)
 - 4. Controller 10 years (Parts)
 - 5. Labor 1 year
- P. The fan shall be mounted to an angle iron or I-beam structure. Consult the Installation Guide for proper sizing and placement of angle iron for a span mount. A structural engineer must be consulted for installation methods outside the manufacturer's recommendation and a certification submitted prior to installation.
- Q. To reduce the risk of injury to persons, the fan shall be installed so that the airfoils are at least 10' (3m) above the floor. The fan installation area must be free of obstructions such as lights, cables, sprinklers or other building structures; with the airfoils at least 2' (61cm) clear of all obstructions. The fan should not be installed where it will be continuously subjected to wind gusts or in close proximity to the outputs of HVAC systems.
- R. If the fan is hung from an extension tube that measures 4' (1.2m) or longer, it may be necessary to provide guy cables or struts to limit potential lateral movement of the fan. A stiffening strut braced against an additional beam may be required if there is a close clearance situation.
- S. The design criteria for the fan mounting system shall be capable of handling 300 ft·lbs (407N·m) of torque.

2.7 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- B. Enclosure Type: Totally enclosed, fan cooled.

2.8 SOURCE QUALITY CONTROL

- A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Secure roof-mounted fans to roof curbs with cadmium-plated hardware. See Section 077200 "Roof Accessories" for installation of roof curbs.
- B. Ceiling Units: Suspend units from structure; use steel wire or metal straps.
- C. Support suspended units from structure using threaded steel rods and spring hangers having a static deflection of 1 inch (25 mm).
- D. Install units with clearances for service and maintenance.
- E. Label units.

3.2 CONNECTIONS

- A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors.
- B. Install ducts adjacent to power ventilators to allow service and maintenance.
- C. Ground equipment.
- D. Connect wiring.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

- 1. Verify that shipping, blocking, and bracing are removed.
- 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
- 3. Verify that cleaning and adjusting are complete.
- 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
- 5. Adjust belt tension.
- 6. Adjust damper linkages for proper damper operation.
- 7. Verify lubrication for bearings and other moving parts.
- 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.

- 9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
- 10. Shut unit down and reconnect automatic temperature-control operators.
- 11. Remove and replace malfunctioning units and retest as specified above.
- C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Prepare test and inspection reports.

3.4 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Adjust belt tension.
- C. Replace fan and motor pulleys as required to achieve design airflow.
- D. Lubricate bearings.

End of Section 233423

SECTION 233713

DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Round ceiling diffusers.
 - 2. Rectangular and square ceiling diffusers.
 - 3. Perforated diffusers.
 - 4. Louver face diffusers.
 - 5. Linear bar diffusers.
 - 6. Linear slot diffusers.
 - 7. Adjustable bar registers and grilles.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated, include the following:
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 - 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.
- B. Samples: For each exposed product and for each color and texture specified.

PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

- A. Round Ceiling Diffuser:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Carnes.
 - b. METALAIRE, Inc.
 - c. Nailor Industries Inc.
 - d. Price Industries.
 - e. <u>Titus</u>.
 - f. Tuttle & Bailey.
 - 2. Devices shall be specifically designed for variable-air-volume flows.
 - 3. Material: Steel or Aluminum as per GRD schedule on drawings.
 - 4. Finish: as per GRD schedule on drawings.
 - 5. Pattern: see plans.
- B. Rectangular and Square Ceiling Diffusers:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Carnes.
 - b. Krueger.

- c. <u>METALAIRE</u>, Inc.
- d. <u>Nailor Industries Inc</u>.
- e. <u>Price Industries</u>.
- f. Titus.
- 2. Devices shall be specifically designed for variable-air-volume flows.
- 3. Material: Steel or Aluminum as per GRD schedule on drawings.
- 4. Finish: as per GRD schedule on drawings.
- 5. Pattern: see plans.

C. Perforated Diffuser:

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Carnes.
 - b. Krueger.
 - c. METALAIRE, Inc.
 - d. Nailor Industries Inc.
 - e. Price Industries.
 - f. Titus.
- 2. Devices shall be specifically designed for variable-air-volume flows.
- 3. Material: Steel backpan and pattern controllers, with steel or aluminum face as per GRD schedule on drawings.
- 4. Finish: as per GRD schedule on drawings.
- 5. Face Size: as per GRD schedule on drawings.

D. Louver Face Diffuser:

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Carnes.
 - b. METALAIRE, Inc.
 - c. Nailor Industries Inc.
 - d. <u>Price Industries</u>.
 - e. Titus.
- 2. Devices shall be specifically designed for variable-air-volume flows.
- 3. Material: Steel or Aluminum.
- 4. Finish: as per GRD schedule on drawings.
- 5. Face Size: as per GRD schedule on drawings.
- 6. Mounting: as per GRD schedule on drawings.
- 7. Pattern: as per GRD schedule on drawings.

2.2 CEILING LINEAR SLOT OUTLETS

A. Linear Bar Diffuser:

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Carnes.
 - b. Krueger.
 - c. METALAIRE, Inc.
 - d. Nailor Industries Inc.

- e. Price Industries.
- f. Titus.
- 2. Devices shall be specifically designed for variable-air-volume flows.
- 3. Material: Steel or Aluminum or Stainless steel as per GRD schedule on drawings.
- 4. Finish: as per GRD schedule on drawings.

B. Linear Slot Diffuser:

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Carnes.
 - b. Krueger.
 - c. METALAIRE, Inc.
 - d. <u>Nailor Industries Inc.</u>
 - e. Price Industries.
 - f. Titus.
- 2. Devices shall be specifically designed for variable-air-volume flows.
- 3. Material Shell: Steel or Aluminum; fully insulated (front, back, end caps) as per GRD schedule on drawings.
- 4. Material Pattern Controller and Tees: Aluminum.
- 5. Finish Face and Shell: as per GRD schedule on drawings.
- 6. Finish Pattern Controller: as per GRD schedule on drawings.
- 7. Finish Tees: as per GRD schedule on drawings.
- 8. Slot Width: as per GRD schedule on drawings.
- 9. Number of Slots: One Two Three Four Insert number.

2.3 REGISTERS AND GRILLES

- A. Adjustable Bar Register:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Carnes.
 - b. Krueger.
 - c. METALAIRE, Inc.
 - d. Nailor Industries Inc.
 - e. Price Industries.
 - f. Titus.
 - 2. Material: Steel or Aluminum or Stainless steel as per GRD schedule on drawings.
 - 3. Finish: as per GRD schedule on drawings.

2.4 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

- B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.2 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

End of Section 233713

SECTION 233723

HVAC GRAVITY VENTILATORS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Louvered-penthouse ventilators.
 - 2. Roof hoods.
 - 3. Wall louvers.
 - 4. Wall vents (Brick vents).

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. LEED Submittals:
 - 1. Product Data for Prerequisite IEQ 1: Documentation indicating that units comply with ASHRAE 62.1, Section 5 "Systems and Equipment."
- C. Shop Drawings: For gravity ventilators. Include plans, elevations, sections, details, ventilator attachments to curbs, and curb attachments to roof structure.
- D. Samples: For each exposed product and for each color and texture specified.

1.3 COORDINATION

A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Aluminum Extrusions: ASTM B 221 (ASTM B 221M), Alloy 6063-T5 or T-52.
- B. Aluminum Sheet: ASTM B 209 (ASTM B 209M), Alloy 3003 or 5005 with temper as required for forming or as otherwise recommended by metal producer for required finish.
- C. Galvanized-Steel Sheet: ASTM A 653/A 653M, G90 (Z275) zinc coating, mill phosphatized.
- D. Fasteners: Same basic metal and alloy as fastened metal or 300 Series stainless steel unless otherwise indicated. Do not use metals that are incompatible with joined materials.
 - 1. Use types and sizes to suit unit installation conditions.
- E. Post-Installed Fasteners for Concrete and Masonry: Torque-controlled expansion anchors made from stainless-steel components, with capability to sustain without failure a load equal to 4 times the loads imposed for concrete, or 6 times the load imposed for masonry, as determined by testing per ASTM E 488, conducted by a qualified independent testing agency.
- F. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187.

2.2 FABRICATION, GENERAL

- A. Factory fabricate gravity ventilators to minimize field splicing and assembly. Disassemble units to the minimum extent as necessary for shipping and handling. Clearly mark units for reassembly and coordinated installation.
- B. Fabricate frames, including integral bases, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances, adjoining material tolerances, and perimeter sealant joints.
- C. Fabricate units with closely fitted joints and exposed connections accurately located and secured.
- D. Fabricate supports, anchorages, and accessories required for complete assembly.

2.3 LOUVERED-PENTHOUSE VENTILATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carnes.
 - 2. <u>Greenheck Fan Corporation</u>.
 - 3. <u>Loren Cook Company</u>.
 - 4. <u>PennBarry</u>.
 - 5. Twin City.
- B. Construction: All-welded assembly with 4-inch (100-mm) deep louvers, mitered corners, and aluminum sheet roof with mineral-fiber insulation and vapor barrier.
- C. Frame and Blade Material and Nominal Thickness: Extruded aluminum, of thickness required to comply with structural performance requirements, but not less than 0.080 inch (2.0 mm) for frames and 0.080 inch (2.0 mm) for blades with condensate deflectors.
 - 1. AMCA Seal: Mark units with the AMCA Certified Ratings Seal.
 - 2. Exterior Corners: Prefabricated corner units with mitered and welded blades and with fully recessed mullions at corners.
- D. Roof Curbs: Galvanized-steel sheet; with mitered and welded corners; 1-1/2 inch (40 mm) thick, rigid fiberglass insulation adhered to inside walls; and 1-1/2 inch (40 mm) wood nailer. Size as required to fit roof opening and ventilator base.
 - 1. Configuration: Built-in raised cant and mounting flange.
 - 2. Overall Height: 12 inches (300 cm).
- E. Bird Screening: Flattened, expanded aluminum, 3/4 by 0.050 inch (19 by 1.27 mm) thick.
- F. Insect Screening: Aluminum, 18-by-16 (1.4-by-1.6-mm) mesh, 0.012-inch (0.30-mm).
- G. Galvanized-Steel Sheet Finish:
 - 1. Surface Preparation: Clean surfaces of dirt, grease, and other contaminants. Clean welds, mechanical connections, and abraded areas and repair galvanizing according to ASTM A 780. Apply a conversion coating suited to the organic coating to be applied over it.
 - 2. Factory Priming for Field-Painted Finish: Where field painting after installation is indicated, apply an air-dried primer immediately after cleaning and pretreating.
 - 3. Baked-Enamel Finish: Immediately after cleaning and pretreating, apply manufacturer's standard finish consisting of prime coat and thermosetting topcoat, with a minimum dry film thickness of 1 mil (0.025 mm) for topcoat and an overall minimum dry film thickness of 2 mils (0.05 mm).
 - a. Color and Gloss: As selected by Architect from manufacturer's full range.

2.4 ROOF HOODS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Carnes.
- 2. Greenheck Fan Corporation.
- 3. <u>Loren Cook Company</u>.
- 4. <u>PennBarry</u>.
- 5. Twin City.
- B. Factory fabricated according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figures 6-6 and 6-7.
- C. Materials: Aluminum sheet, minimum 0.063-inch- (1.6-mm-) thick base and 0.050-inch- (1.27-mm-) thick hood; suitably reinforced.
- D. Roof Curbs: Galvanized-steel sheet; with mitered and welded corners; 1-1/2-inch- (40-mm-) thick, rigid fiberglass insulation adhered to inside walls; and 1-1/2-inch (40-mm) wood nailer. Size as required to fit roof opening and ventilator base.
 - 1. Configuration: Built-in raised cant and mounting flange.
 - 2. Overall Height: 12 inches (300 mm).
- E. Bird Screening: Flattened, expanded aluminum, 3/4 by 0.050 inch (19 by 1.27 mm) thick.
- F. Insect Screening: Aluminum, 18-by-16 (1.4-by-1.6-mm) mesh, 0.012-inch (0.30-mm).
- G. Galvanized-Steel Sheet Finish:
 - 1. Surface Preparation: Clean surfaces of dirt, grease, and other contaminants. Clean welds, mechanical connections, and abraded areas and repair galvanizing according to ASTM A 780. Apply a conversion coating suited to the organic coating to be applied over it.
 - 2. Factory Priming for Field-Painted Finish: Where field painting after installation is indicated, apply an air-dried primer immediately after cleaning and pretreating.
 - 3. Baked-Enamel Finish: Immediately after cleaning and pretreating, apply manufacturer's standard finish consisting of prime coat and thermosetting topcoat, with a minimum dry film thickness of 1 mil (0.025 mm) for topcoat and an overall minimum dry film thickness of 2 mils (0.05 mm).
 - a. Color and Gloss: As selected by Architect from manufacturer's full range.

2.5 FIXED, EXTRUDED - ALUMINUM LOUVERS

- A. Horizontal, Drainable-Blade Louver:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Warming and Ventilating, Inc.; a Mestek company.
 - b. <u>Cesco Products; a division of Mestek, Inc.</u>
 - c. Greenheck Fan Corporation.
 - d. Industrial Louvers, Inc.
 - e. Louvers & Dampers, Inc.; a division of Mestek, Inc.
 - f. Ruskin Company; Tomkins PLC.
 - g. Nailor
 - h. Pottorff
 - 2. Louver Depth: 4 inches.
 - 3. Frame and Blade Nominal Thickness: Not less than 0.060 inch for blades and 0.080 inch for frames.
 - 4. Louver Performance Ratings:
 - a. Free Area: Not less than 8.5 sq. ft. for 48-inch-wide by 48-inch- high louver.

- b. Point of Beginning Water Penetration: Not less than 900 fpm.
- c. Air Performance: Not more than 0.10-inch wg static pressure drop at 800-fpm free-area intake velocity.
- 5. AMCA Seal: Mark units with AMCA Certified Ratings Seal.
- 6. Louver Screening: Flattened, expanded aluminum 3/4 by 0.05 inches.
- 7. Drainable blade type construction.
- 8. Provie multiple sections as required to accommodate overall size specified.
- 9. Set in openings, caulk and connect the ductwork where applicable.
- 10. Finish: Louvers shall receive Kynar finish color coating applied following a thorough cleaning, pretreatment, and prime coating. Cleaning shall include complete submersion in an acid cleaner, an alkali cleaner, an acid deoxidation, an amorphous chrome phosphate conversion coating, and an acidulated final rinse. Louvers shall be dried before application of final finish. Kynar shall be applied to provide a dry thickness of approximately 1.2 mils when baked at 450 degrees F. for 10 minutes. Color shall be selected by the Architect.
- 11. Louvers installed in precast and masonry walls shall not have a flange frame.
- 12. Louvers installed in metal panel walls shall have a flange frame.
- 13. Louvers shall have extended sill.

2.6 WALL VENTS (BRICK VENTS)

- A. Extruded-Aluminum Wall Vents:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Greenheck Fan Corporation.
 - b. Industrial Louvers, Inc.
 - c. Louvers & Dampers, Inc.; a division of Mestek, Inc.
 - d. Ruskin Company: Tomkins PLC.
 - 2. Extruded-aluminum louvers and frames, not less than 0.125-inch nominal thickness, assembled by welding; with 18-by-14-mesh, aluminum insect screening on inside face; incorporating weep holes, continuous drip at sill, and integral waterstop on inside edge of sill; of load-bearing design and construction.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install gravity ventilators level, plumb, and at indicated alignment with adjacent work.
- B. Secure gravity ventilators to roof curbs with cadmium-plated hardware. Use concealed anchorages where possible.
- C. Install gravity ventilators with clearances for service and maintenance.
- D. Install perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.
- E. Install concealed gaskets, flashings, joint fillers, and insulation as installation progresses.
- F. Label gravity ventilators according to requirements.

- G. Protect galvanized and nonferrous-metal surfaces from corrosion or galvanic action by applying a heavy coating of bituminous paint on surfaces that will be in contact with concrete, masonry, or dissimilar metals.
- H. Repair finishes damaged by cutting, welding, soldering, and grinding. Restore finishes so no evidence remains of corrective work. Return items that cannot be refinished in the field to the factory, make required alterations, and refinish entire unit or provide new units.

End of Section 233723

SECTION 235400

FURNACES

PART 1 - GENERAL

1.1 **SUMMARY**

- A. This Section includes the following:
 - 1. Gas-fired, noncondensing or Gas-fired, condensing or Electric furnaces and accessories complete with controls.
 - 2. Air filters.
 - 3. Air cleaners.
 - 4. Humidifiers.
 - 5. Refrigeration components.
 - 6. Air Purification System.

1.2 ACTION SUBMITTALS

- A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for each of the following:
 - 1. Furnace.
 - 2. Thermostat.
 - 3. Humidistat.
 - 4. Air filter.
 - 5. Air cleaner.
 - 6. Humidifier.
 - 7. Refrigeration components.
 - 8. Air Purification System.

1.3 INFORMATIONAL SUBMITTALS

A. Warranty.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- C. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
- D. Comply with NFPA 70.

1.6 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace the following components of furnaces that fail in materials or workmanship within specified warranty period:
 - 1. Warranty Period, Commencing on Date of Substantial Completion:
 - a. Furnace Heat Exchanger: 10 years.
 - b. Integrated Ignition and Blower Control Circuit Board: Five years.
 - c. Draft-Inducer Motor: Five years.
 - d. Evaporator and Condenser Coils: Five years.

PART 2 - PRODUCTS

2.1 GAS-FIRED FURNACES, NONCONDENSING

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Standard Companies, Inc.
 - 2. Bryant Heating & Cooling Systems; Div. of United Technologies Corp.
 - 3. <u>Carrier Corporation; Div. of United Technologies Corp.</u>
 - 4. Lennox Industries Inc.
 - 5. Rheem Manufacturing Company; Air Conditioning Division.
 - 6. Ruud Air Conditioning Division.
 - 7. Trane.
 - 8. York International Corp.; a division of Unitary Products Group.
- C. Where variable speed furnaces are scheduled for twinning application, contractor may provide multispeed unit twinned together. This change must be notified to engineer prior to bid.
- D. General Requirements for Gas-Fired, Noncondensing Furnaces: Factory assembled, piped, wired, and tested; complying with ANSI Z21.47/CSA 2.3, "Gas-Fired Central Furnaces," and with NFPA 54.
- E. Cabinet: Steel.
 - 1. Cabinet interior around heat exchanger shall be factory-installed insulation.
 - 2. Lift-out panels shall expose burners and all other items requiring access for maintenance.
 - 3. Factory paint external cabinets in manufacturer's standard color.
 - 4. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- F. Fan: Centrifugal, factory balanced, resilient mounted, direct or belt drive.
 - 1. Fan Motors: Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 2. Special Motor Features: Single speed, Premium (TM) efficiency, as defined in Section 230513 "Common Motor Requirements for HVAC Equipment," and with internal thermal protection and permanent lubrication.
 - 3. Special Motor Features: Multitapped, multispeed with internal thermal protection and permanent lubrication.
 - 4. Special Motor Features: Electronically controlled motor (ECM) controlled by integrated furnace/blower control.
- G. Type of Gas: Natural.

- H. Heat Exchanger: Aluminized steel.
- I. Burner:
 - 1. Gas Valve: 100 percent safety two-stage or modulating as scheduled on drawings main gas valve, main shutoff valve, pressure regulator, safety pilot with electronic flame sensor, limit control, transformer, and combination ignition/fan timer control board.
 - 2. Ignition: Electric pilot ignition, with hot-surface igniter or electric spark ignition.
- J. Gas-Burner Safety Controls:
 - 1. Electronic Flame Sensor: Prevents gas valve from opening until pilot flame is proven; stops gas flow on ignition failure.
 - 2. Flame Rollout Switch: Installed on burner box; prevents burner operation.
 - 3. Limit Control: Fixed stop at maximum permissible setting; de-energizes burner on excessive bonnet temperature; automatic reset.
- K. Combustion-Air Inducer: Centrifugal fan with thermally protected motor and sleeve bearings prepurges heat exchanger and vents combustion products; pressure switch prevents furnace operation if combustion-air inlet or flue outlet is blocked.
- L. Furnace Controls: Solid-state board integrates ignition, heat, cooling, and fan speeds; adjustable fan-on and fan-off timing; terminals for connection to accessories.

2.2 GAS-FIRED FURNACES, CONDENSING

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Standard Companies, Inc.
 - 2. Arcoaire Air Conditioning & Heating; a division of International Comfort Products, LLC.
 - 3. Bryant Heating & Cooling Systems; Div. of United Technologies Corp.
 - 4. Carrier Corporation; Div. of United Technologies Corp.
 - 5. Comfortmaker Air Conditioning & Heating; a division of International Comfort Products, LLC.
 - 6. Lennox Industries Inc.
 - 7. Rheem Manufacturing Company; Air Conditioning Division.
 - 8. Ruud Air Conditioning Division.
 - 9. Trane.
 - 10. York International Corp.; a division of Unitary Products Group.
- C. General Requirements for Gas-Fired, Condensing Furnaces: Factory assembled, piped, wired, and tested; complying with ANSI Z21.47/CSA 2.3, "Gas-Fired Central Furnaces," and with NFPA 54.
- D. Cabinet: Steel.
 - 1. Cabinet interior around heat exchanger shall be factory-installed insulation.
 - 2. Lift-out panels shall expose burners and all other items requiring access for maintenance.
 - 3. Factory paint external cabinets in manufacturer's standard color.
 - 4. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- E. Fan: Centrifugal, factory balanced, resilient mounted, direct or belt drive.
 - 1. Special Motor Features: Multitapped, multispeed with internal thermal protection and permanent lubrication.

Furnaces Page 3 of 10 Section 235400

- 2. Special Motor Features: Electronically controlled motor (ECM) controlled by integrated furnace/blower control.
- F. Type of Gas: Natural.
- G. Heat Exchanger:
 - 1. Primary: Aluminized steel
 - 2. Secondary: Polyethylene-coated steel.

H. Burner:

- 1. Gas Valve: 100 percent safety two-stage or modulating as scheduled on drawings main gas valve, main shutoff valve, pressure regulator, safety pilot with electronic flame sensor, limit control, transformer, and combination ignition/fan timer control board.
- 2. Ignition: Electric pilot ignition, with hot-surface igniter or electric spark ignition.
- I. Gas-Burner Safety Controls:
 - 1. Electronic Flame Sensor: Prevents gas valve from opening until pilot flame is proven; stops gas flow on ignition failure.
 - 2. Flame Rollout Switch: Installed on burner box; prevents burner operation.
 - 3. Limit Control: Fixed stop at maximum permissible setting; de-energizes burner on excessive bonnet temperature; automatic reset.
- J. Combustion-Air Inducer: Centrifugal fan with thermally protected motor and sleeve bearings prepurges heat exchanger and vents combustion products; pressure switch prevents furnace operation if combustion-air inlet or flue outlet is blocked.
- K. Furnace Controls: Solid-state board integrates ignition, heat, cooling, and fan speeds; adjustable fan-on and fan-off timing; terminals for connection to accessories; diagnostic light with viewport.
- L. Accessories:
 - 1. Combination Combustion-Air Intake and Vent: PVC plastic fitting to combine combustion-air inlet and vent through outside wall or roof.
 - 2. CPVC Plastic Vent Materials.
 - a. CPVC Plastic Pipe: Schedule 40, complying with ASTM F 441/F 441M.
 - b. CPVC Plastic Fittings: Schedule 40, complying with ASTM F 438, socket type.
 - c. CPVC Solvent Cement: ASTM F 493.
 - 1) CPVC solvent cement shall have a VOC content of 490 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2) Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3) Solvent cement and adhesive primer shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
 - 3. PVC Plastic Vent Materials:
 - a. PVC Plastic Pipe: Schedule 40, complying with ASTM D 1785.
 - b. PVC Plastic Fittings: Schedule 40, complying with ASTM D 2466, socket type.
 - c. PVC Solvent Cement: ASTM D 2564.

- 1) PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- 2) Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- 3) Solvent cement and adhesive primer shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.3 ELECTRIC FURNACES

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Bryant Heating & Cooling Systems; Div. of United Technologies Corp.</u>
 - 2. Carrier Corporation; Div. of United Technologies Corp.
 - 3. Comfortmaker Air Conditioning & Heating; a division of International Comfort Products, LLC.
 - 4. <u>Lennox Industries Inc.</u>
 - 5. Rheem Manufacturing Company; Air Conditioning Division.
 - 6. Ruud Air Conditioning Division.
 - 7. York International Corp.; a division of Unitary Products Group.
 - 8. Trane.
- C. General Requirements for Electric Furnaces: Factory assembled, piped, wired, and tested.
- D. Cabinet: Steel, with duct liner downstream from cooling coil.
 - 1. Duct Liner: Fiberglass, minimum 3/4 inch (19 mm) thick, complying with ASTM C 1071 and having a coated surface exposed to airstream complying with NFPA 90A or NFPA 90B and with NAIMA's "Fibrous Glass Duct Liner Standard."
 - a. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
 - 2. Factory paint external cabinets in manufacturer's standard color.
- E. Fan: Centrifugal, factory balanced, resilient mounted, direct drive.
 - 1. Special Motor Features: Multitapped, multispeed with internal thermal protection and permanent lubrication.
 - 2. Special Motor Features: Electronically controlled motor (ECM) controlled by integrated furnace/blower control.
- F. Electric-Resistant Heating Elements: Helix-wound, nickel-chromium wire-heating elements in ceramic insulators mounted on steel supports.
- G. Heating-Element Control: Sequencer relay with relay for each element; switches elements on and off, with delay between each increment; initiates, stops, or changes fan speed.
- H. Summer Fan Switch: Connected to permit independent on-off switch of unit fan.

2.4 THERMOSTATS AND HUMIDISTATS

A. Controls shall comply with requirements in ASHRAE/IESNA 90.1, "Controls."

Furnaces Page 5 of 10 Section 235400

- B. Solid-State Thermostat: Wall-mounting, programmable, microprocessor-based unit with automatic and manual switching from heating to cooling, preferential rate control, seven-day programmability with minimum of four temperature presets per day, vacation mode, and battery backup protection against power failure for program settings.
- C. Single-Stage, Heating-Cooling Thermostat: Adjustable, heating-cooling, wall-mounting unit with fan on-automatic selector.
- D. Two-Stage, Heating-Cooling Thermostat: Adjustable, heating-cooling, wall-mounting unit with fan on-automatic selector.
- E. Solid-State, Combination Thermostat and Humidistat: Wall-mounting, programmable, microprocessor-based unit with automatic switching from heating to cooling and humidifying to dehumidifying, preferential rate control, seven-day programmability with minimum of four temperature presets per day, vacation mode, and battery backup protection against power failure for program settings.
- F. Humidistat: Adjustable, wall-mounting unit.
- G. Control Wiring: Unshielded twisted-pair cabling.
 - 1. No. 24 AWG, 100 ohm, four pair.
 - 2. Cable Jacket Color: Blue.

2.5 AIR FILTERS

- A. Washable Filters: 1-inch- (25-mm-) thick, urethane pad.
- B. Disposable Filters: 1-inch- (25-mm-) thick fiberglass media with ASHRAE 52.2 MERV rating of 6 or higher in sheet metal frame.
- C. Charged Media Air Filters: Sheet metal housing arranged to be ducted in return-air duct connection to furnace, generates electrostatic charge; MERV 10 rating.
- D. HEPA Air Filter Units: Sheet metal housing with fan arranged to be ducted to return-air duct connection to furnace, with activated carbon prefilter, high-efficiency particulate air (HEPA) disposable filter, and carbon VOC. HEPA shall be as follows:
 - 1. Standard: UL 586, "High-Efficiency, Particulate, Air Filter Units."
 - 2. Rating: ASHRAE 52.1, dust-spot efficiency of 65 percent; ASHRAE 52.2, 99.97 percent efficiency to 0.03-micrometer particle size.

2.6 AIR CLEANERS

- A. Electronic Air Cleaners: Packaged system, including sheet metal housing, prefilter, power supply, and automatic control device, arranged for mounting in return-air duct at furnace; equip with on-off and test switches and pilot light.
 - 1. Standard: UL 586, "High-Efficiency, Particulate, Air Filter Units."
 - 2. Rating: ASHRAE 52.2, particle size to 0.01 micrometer.
 - 3. Static Pressure Drop: Maximum 0.14-inch wg (35 Pa) at 300-fpm (1.52-m/s) air velocity.

2.7 HUMIDIFIERS

- A. Minimum capacity rating indicated according to ARI 610, "Central System Humidifiers for Residential Applications."
- B. Media-wheel bypass type with bypass damper and motor-driven media wheel in reservoir with float-valve level control; arranged for mounting on return duct or plenum with bypass connection to supply duct.

Furnaces Page 6 of 10 Section 235400

- C. Wetted-pad, continuous-drain, bypass type with bypass damper and water-flow control orifice; arranged for mounting on return duct or plenum with bypass connection to supply duct.
- D. Fan-powered, wetted-pad, continuous-drain type with water-flow control orifice and motor; arranged for mounting on duct or plenum.
- E. Pumped, fan-powered, wetted-pad type with reservoir-level control and pump and fan motors; arranged for mounting on duct or plenum.
- F. Comply with applicable requirements in ASHRAE 62.1.

2.8 REFRIGERATION COMPONENTS

- A. General Refrigeration Component Requirements:
 - 1. Refrigeration compressor, coils, and specialties shall be designed to operate with CFC-free refrigerants.
 - 2. Energy Efficiency: Equal to or greater than prescribed by ASHRAE/IESNA 90.1, "Energy Standard for Buildings except Low-Rise Residential Buildings."
- B. Refrigerant Coil: Copper tubes mechanically expanded into aluminum fins. Comply with ARI 210/240, "Unitary Air-Conditioning and Air-Source Heat Pump Equipment." Match manufacturer and size with furnace. Include condensate drain pan with accessible drain outlet complying with ASHRAE 62.1.
 - 1. Refrigerant Coil Enclosure: Steel, matching furnace and evaporator coil, with access panel and flanges for integral mounting at or on furnace cabinet and galvanized sheet metal drain pan coated with black asphaltic base paint.
- C. Refrigerant Line Kits: Annealed-copper suction and liquid lines factory cleaned, dried, pressurized with nitrogen, sealed, and with suction line insulated. Provide in standard lengths for installation without joints, except at equipment connections.
 - 1. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I, 1 inch (25 mm) thick.
- D. Refrigerant Piping: Comply with requirements in Section 232300 "Refrigerant Piping."
- E. Air-Cooled, Compressor-Condenser Unit:
 - 1. Casing: Steel, finished with baked enamel, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gauge ports on exterior of casing.
 - 2. Compressor: Hermetically sealed scroll type.
 - a. Crankcase heater.
 - b. Restrained vibration isolation mounts for compressor.
 - c. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 - d. Two-speed compressor motors shall have manual-reset high-pressure switch and automatic-reset low-pressure switch.
 - e. Refrigerant Charge: R-410A.
 - 3. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with ARI 210/240, and with liquid subcooler.
 - 4. Heat-Pump Components: Reversing valve and low-temperature air cut-off thermostat.
 - 5. Fan: Aluminum-propeller type, directly connected to motor.
 - 6. Motor: Permanently lubricated, with integral thermal-overload protection.
 - 7. Low Ambient Kit: Permits operation down to 45 deg F (7 deg C) or lower where scheduled.

Furnaces Page 7 of 10 Section 235400

- 8. Mounting Base: Polyethylene.
- 9. Hail Guards for condenser coils.

2.9 AIR PURIFICATION SYSTEM

A. Duct mounted U.V. light enhanced for an oxidation process producing hydro-peroxides, super oxides and hydroxides. PHI-Cell technology as manufactured by RGF Environmental Group, Inc.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install gas-fired furnaces and associated fuel and vent features and systems according to NFPA 54.
- B. Suspended Units: Suspend from structure using threaded rods, spring hangers, and building attachments. Secure rods to unit hanger attachments. Adjust hangers so unit is level and plumb.
 - 1. Install seismic restraints to limit movement of furnace by resisting code-required seismic acceleration.
- C. Base-Mounted Units: Secure units to substrate. Provide optional bottom closure base if required by installation conditions.
 - 1. Anchor furnace to substrate to resist code-required seismic acceleration.
- D. Controls: Install thermostats and humidistats at mounting height of 60 inches (1500 mm) above floor.
- E. Wiring Method: Install control wiring in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Conceal control wiring except in unfinished spaces.
- F. Install ground-mounted, compressor-condenser components on 4-inch- (100-mm-) thick, reinforced concrete base; 4 inches (100 mm) larger on each side than unit. Coordinate anchor installation with concrete base.
- G. Install roof-mounted, compressor-condenser components on equipment supports, anchor units to supports with removable, cadmium-plated fasteners.

3.2 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties. Connect gas piping with union or flange and appliance connector valve.
- B. Install piping adjacent to equipment to allow service and maintenance.
- C. Drawings indicate general arrangement of piping, fittings, and specialties. Connect water piping with union and ball valve.
- D. Vent Connection, Noncondensing, Gas-Fired Furnaces: Connect Type B vents to furnace vent connection and extend outdoors.
- E. Vent and Outside-Air Connection, Condensing, Gas-Fired Furnaces: Connect plastic piping vent material to furnace connections and extend outdoors. Terminate vent outdoors with a cap and in an arrangement that will protect against entry of birds, insects, and dirt.
 - 1. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
 - 2. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
 - 3. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - a. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.

Furnaces Page 8 of 10 Section 235400

- b. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
- c. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
- d. Requirements for Low-Emitting Materials:
 - 1) CPVC solvent cement shall have a VOC content of 490 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2) PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3) Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 4) Solvent cement and adhesive primer shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- 4. Slope pipe vent back to furnace or to outside terminal.
- F. Connect ducts to furnace with flexible connector.
- G. Connect refrigerant tubing kits to refrigerant coil in furnace and to air-cooled, compressor-condenser unit.
 - 1. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- H. Comply with requirements for installation and joint construction of refrigerant piping.
- I. Complete installation and startup checks and start units according to manufacturer's written instructions.
- J. Verify proper operation of capacity control device.
- K. Adjust airflow and initial temperature and humidity set points.
- L. Set controls, burner, and other adjustments for optimum heating performance and efficiency. Adjust heat-distribution features, including shutters, dampers, and relays, to provide optimum heating performance and system efficiency.
- M. After completing installation, clean furnaces internally according to manufacturer's written instructions.
- N. Install new filters in each furnace within 14 days after Substantial Completion.

3.3 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. Perform electrical test and visual and mechanical inspection.
 - 2. Leak Test: After installation, charge systems with 150 PSI of nitrogen and test for a minimum of 1 hour. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation, product capability, and compliance with requirements.
 - 4. Verify that fan wheel is rotating in the correct direction and is not vibrating or binding.
 - 5. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.

Furnaces Page 9 of 10 Section 235400

End of Section 235400

SECTION 236313

AIR-COOLED REFRIGERANT CONDENSERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes packaged, air-cooled refrigerant condensers for outdoor installation.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. LEED Submittals:
 - 1. Product Data for Prerequisite EA 2: Documentation indicating that units comply with applicable requirements in ASHRAE/IESNA 90.1.
 - 2. Product Data for Credit EA 4: Documentation indicating that air-cooled refrigerant condensers and refrigerants comply.
- C. Shop Drawings: For air-cooled refrigerant condensers. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Wiring Diagrams: For power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.4 OUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Daikin / McQuay
 - 2. <u>Carrier</u>
 - 3. YORK; a Johnson Controls company.
 - 4. Trane
 - 5. Ruud
 - 6. Rheem
 - 7. Lennox
 - 8. Bryant
 - 9. AAON, Inc.

2.2 MANUFACTURED UNITS

- A. Description: Factory assembled and tested; consisting of casing, condenser coils, condenser fans and motors, and unit controls.
- B. Refrigerant: R-407C or R-410A.
- C. Condenser Coil: Factory tested at 425 psig (2930 kPa).
 - 1. Tube: 1/2-inch- (13-mm-) diameter seamless copper.
 - 2. Coil Fin: Aluminum.
 - 3. Coating: as scheduled.
 - 4. Circuit: To match compressors with liquid subcooling coil.
- D. Condenser Fans and Drives: Propeller fans with aluminum or galvanized-steel fan blades, for vertical air discharge; directly driven with permanently lubricated ball-bearing motors with integral current- and thermal-overload protection.
 - 1. Weather-proof motors with rain shield and shaft slinger.
 - 2. Extend grease lines to outside of casing.
- E. Operating and Safety Controls: Include condenser fan motor thermal and overload cutouts; 115-V control transformer, if required; magnetic contactors for condenser fan motors and a nonfused factory-mounted and -wired disconnect switch for single external electrical power connection.
 - 1. Fan Cycling Control: Head pressure switches.
- F. Casings: Galvanized or zinc-coated steel treated and finished with manufacturer's standard paint coating, designed for outdoor installation with weather protection for components and controls, and with the following:
 - 1. Removable panels for access to controls, condenser fans, motors, and drives.
 - 2. Plated-steel fan guards.
 - 3. Lifting eyes.

2.3 CAPACITIES AND CHARACTERISTICS

A. Refer to equipment schedules for additional requirements.

2.4 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Enclosure Type: Totally enclosed, fan cooled.
 - 2. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 3. Mount unit-mounted disconnect switches.

2.5 SOURCE QUALITY CONTROL

A. Testing Requirements: Factory test sound-power-level ratings according to ARI 270.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install units level and plumb, firmly anchored in locations indicated; maintain manufacturer's recommended clearances.

- B. Equipment Mounting: Install air-cooled condenser refrigerant condensers using elastomeric pads. Comply with requirements for vibration isolation devices specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."
 - 1. Minimum Deflection: 1/4 inch (6 mm).
- C. Maintain manufacturer's recommended clearances for service and maintenance.
- D. Loose Components: Install electrical components, devices, and accessories that are not factory mounted.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in Section 232113 "Hydronic Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to machine to allow service and maintenance.
- C. Refrigerant Piping: Connect piping to unit with pressure relief, service valve, filter-dryer, and moisture indicator on each refrigerant-circuit liquid line. Refrigerant piping and specialties are specified in Section 232300 "Refrigerant Piping."
- D. Refrigerant piping shall be sized for length and configuration by unit manufacturer.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Perform electrical test and visual and mechanical inspection.
 - 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation. Complete manufacturer's starting checklist.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 5. Verify proper airflow over coils.
- C. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.
- D. Air-cooled refrigerant condensers will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.

End of Section 236313

SECTION 238126

SPLIT-SYSTEM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes split-system air-conditioning and heat-pump units consisting of separate evaporator-fan and compressor-condenser components.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. LEED Submittals:
 - 1. Product Data for Credit EA 4: Documentation indicating that equipment and refrigerants comply.
 - 2. Product Data for Prerequisite IEQ 1: Documentation indicating that units comply with ASHRAE 62.1, Section 5 "Systems and Equipment."
- C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1.3 INFORMATIONAL SUBMITTALS

A. Warranty: Sample of special warranty.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE Compliance:
 - 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
 - 2. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 "Outdoor Air Quality," Section 5 "Systems and Equipment," Section 6 " Procedures," and Section 7 "Construction and System Start-up."
- C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.

1.6 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period:
 - a. For Compressor: Five year(s) from date of Substantial Completion.
 - b. For Parts: One year from date of Substantial Completion.
 - c. For Labor: One year from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. LG Electronics.
 - 2. Daikin.
 - 3. Panasonic
 - 4. Fujitsu
 - 5. EMI.

2.2 INDOOR UNITS (5 TONS (18 kW) OR LESS)

- A. Concealed Evaporator-Fan Components:
 - 1. Chassis: Galvanized steel with flanged edges, removable panels for servicing, and insulation on back of panel.
 - 2. Insulation: Faced, glass-fiber duct liner.
 - 3. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermal-expansion valve. Comply with ARI 210/240.
 - 4. Water Coil: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch (2.5 mm); leak tested to 300 psig (2070 kPa) underwater; with a two-position control valve.
 - 5. Electric Coil: Helical, nickel-chrome, resistance-wire heating elements; with refractory ceramic support bushings, automatic-reset thermal cutout, built-in magnetic contactors, manual-reset thermal cutout, airflow proving device, and one-time fuses in terminal box for overcurrent protection.
 - 6. Fan: Forward-curved, double-width wheel of galvanized steel; directly connected to motor.
 - 7. Fan Motors:
 - a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 - c. Wiring Terminations: Connect motor to chassis wiring with plug connection.
 - 8. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
 - 9. Filters: Permanent, cleanable.
 - 10. Condensate Drain Pans:
 - a. Fabricated with one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.
 - 1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 - b. Single-wall, galvanized-steel sheet.
 - c. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
 - 1) Minimum Connection Size: NPS 1 (DN 25).
 - d. Pan-Top Surface Coating: Asphaltic waterproofing compound.
 - e. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.

B. Wall-Mounted, Evaporator-Fan Components:

- 1. Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect, and discharge drain pans with drain connection.
- 2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermal-expansion valve. Comply with ARI 210/240.
- 3. Electric Coil: Helical, nickel-chrome, resistance-wire heating elements; with refractory ceramic support bushings, automatic-reset thermal cutout, built-in magnetic contactors, manual-reset thermal cutout, airflow proving device, and one-time fuses in terminal box for overcurrent protection.
- 4. Fan: Direct drive, centrifugal.
- 5. Fan Motors:
 - a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 - c. Enclosure Type: Totally enclosed, fan cooled.
 - d. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
 - e. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.
 - f. Mount unit-mounted disconnect switches on [exterior] [interior] of unit.
- 6. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- 7. Condensate Drain Pans:
 - a. Fabricated with one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.
 - 1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 - b. Single-wall, galvanized-steel sheet.
 - c. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
 - 1) Minimum Connection Size: NPS 1 (DN 25).
 - d. Pan-Top Surface Coating: Asphaltic waterproofing compound.
 - e. Provide unit with integral condensate pump.

2.3 OUTDOOR UNITS (5 TONS (18 kW) OR LESS)

- A. Air-Cooled, Compressor-Condenser Components:
 - 1. Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
 - 2. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 - a. Compressor Type: Scroll.
 - b. Two-speed compressor motor with manual-reset high-pressure switch and automatic-reset low-pressure switch.

- c. Refrigerant Charge: R-410A.
- d. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid subcooler. Comply with ARI 210/240.
- 3. Heat-Pump Components: Reversing valve and low-temperature-air cutoff thermostat.
- 4. Fan: Aluminum-propeller type, directly connected to motor.
- 5. Motor: Permanently lubricated, with integral thermal-overload protection.
- 6. Low Ambient Kit: Permits operation down to 45 deg F (7 deg C).
- 7. Mounting Base: Polyethylene.

2.4 ACCESSORIES

- A. Control equipment and sequence of operation are specified in Section 230900 "Instrumentation and Control for HVAC" and Section 230993 "Sequence and Operations for HVAC Controls."
- B. Thermostat: Low voltage with subbase to control compressor and evaporator fan.
- C. Thermostat: Wireless infrared functioning to remotely control compressor and evaporator fan, with the following features:
 - 1. Compressor time delay.
 - 2. 24-hour time control of system stop and start.
 - 3. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
 - 4. Fan-speed selection including auto setting.
- D. Automatic-reset timer to prevent rapid cycling of compressor.
- E. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends. Line set shall be 1/2" closed cell insulation with polyethylene hard shell outer jacket. Insulation shall be paintable, weather / ultraviolet resistant and ASTM E-84 25/50 compliant as tested per UL72 fire and smoke rating.
- F. Drain Hose: For condensate.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install units level and plumb.
- B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
- C. Install ground-mounted, compressor-condenser components on 4-inch- (100-mm-) thick, reinforced concrete base that is 4 inches (100 mm) larger, on each side, than unit.
- D. Install roof-mounted, compressor-condenser components on equipment supports. Anchor units to supports with removable, cadmium-plated fasteners.
- E. Install seismic restraints.
- F. Install compressor-condenser components on 3/4 inch thick neoprene pad.
- G. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Prepare test and inspection reports.

3.4 **DEMONSTRATION**

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain units.

End of Section 238126

SECTION 238239

UNIT HEATERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Cabinet unit heaters with centrifugal fans and hot-water and electric-resistance heating coils.
 - 2. Propeller unit heaters with hot-water and electric-resistance heating coils.
 - 3. Wall, floor and ceiling heaters with heating coils.
 - 4. Infrared radiant heaters.

1.2 ACTION SUBMITTALS

- A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for each product indicated.
- B. LEED Submittals:
 - 1. Product Data for Prerequisite IEQ 1: Documentation indicating that units comply with ASHRAE 62.1, Section 5 "Systems and Equipment."
- C. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Plans, elevations, sections, and details.
 - 2. Location and size of each field connection.
 - 3. Equipment schedules to include rated capacities, furnished specialties, and accessories.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- C. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."

PART 2 - PRODUCTS

2.1 CABINET UNIT HEATERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Berko Electric Heating; a division of Marley Engineered Products.

Unit Heaters Page 1 of 6 Section 238239

- 2. Chromalox, Inc.; a division of Emerson Electric Company.
- 3. Dunham-Bush, Inc.
- 4. Indeeco.
- 5. <u>International Environmental Corporation</u>.
- 6. Markel Products; a division of TPI Corporation.
- 7. McQuay International.
- 8. QMark Electric Heating; a division of Marley Engineered Products.
- 9. Trane.
- B. Description: A factory-assembled and -tested unit complying with ARI 440.
 - 1. Comply with UL 2021.
- C. Coil Section Insulation: Glass-fiber insulation; surfaces exposed to airstream shall be aluminum-foil facing to prevent erosion of glass fibers.
 - 1. Thickness: 1/2 inch (13 mm).
 - 2. Thermal Conductivity (k-Value): 0.26 Btu x in./h x sq. ft. at 75 deg F (0.037 W/m x K at 24 deg C) mean temperature.
 - 3. Fire-Hazard Classification: Maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM E 84.
 - 4. Adhesive: Comply with ASTM C 916 and with NFPA 90A or NFPA 90B.
 - 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- D. Cabinet: Steel with baked-enamel finish with manufacturer's standard paint, in color selected by Architect.
 - 1. Vertical Unit, Exposed Front Panels: Minimum 0.0528-inch- (1.35-mm-) thick, galvanized, sheet steel, removable panels with channel-formed edges secured with tamperproof cam fasteners.
 - 2. Horizontal Unit, Exposed Bottom Panels: Minimum 0.0528-inch- (1.35-mm-) thick, galvanized, sheet steel, removable panels secured with tamperproof cam fasteners and safety chain.
 - 3. Recessing Flanges: Steel, finished to match cabinet.
 - 4. Control Access Door: Key operated.
 - 5. Base: Minimum 0.0528-inch- (1.35-mm-) thick steel, finished to match cabinet, 4 inches (100 mm) high with leveling bolts.
 - 6. Extended Piping Compartment: 8-inch- (200-mm-) wide piping end pocket.
 - 7. False Back: Minimum 0.0428-inch- (1.1-mm-) thick steel, finished to match cabinet.
- E. Filters: Minimum arrestance according to ASHRAE 52.1 and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
 - 1. Washable Foam: 70 percent arrestance and 3 MERV.
 - 2. Glass Fiber Treated with Adhesive: 80 percent arrestance and 5 MERV.
 - 3. Pleated: 90 percent arrestance and 7 MERV.
- F. Hot-Water Coil: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch (2.5 mm) and rated for a minimum working pressure of 200 psig (1378 kPa) and a maximum enteringwater temperature of 220 deg F (104 deg C). Include manual air vent and drain.
- G. Electric-Resistance Heating Coil: Nickel-chromium heating wire, free from expansion noise and hum, mounted in ceramic inserts in a galvanized-steel housing; with fuses in terminal box for overcurrent protection and limit controls for high-temperature protection. Terminate elements in stainless-steel machine-staked terminals secured with stainless-steel hardware.
- H. Fan and Motor Board: Removable.

- 1. Fan: Forward curved, high static, double width, centrifugal; directly connected to motor. Thermoplastic or painted-steel wheels, and aluminum, painted-steel, or galvanized-steel fan scrolls.
- 2. Motor: Permanently lubricated, multispeed; resiliently mounted on motor board.
- 3. Wiring Terminations: Connect motor to chassis wiring with plug connection.
- I. Factory, Hot-Water Piping Package: ASTM B 88, Type L (ASTM B 88M, Type B) copper tube with wrought-copper fittings and brazed joints. Label piping to indicate service, inlet and outlet.
 - 1. Hose Kits: Minimum 400-psig (2758-kPa) working pressure, and operating temperatures from 33 to 211 deg F (0.5 to 99 deg C). Tag hose kits to equipment designations.
 - a. Length: 24 inches (600 mm).
 - b. Minimum Diameter: Equal to cabinet unit heater connection size.
 - 2. Two-Piece, Ball Valves: Bronze body with full-port, chrome-plated bronze ball; PTFE or TFE seats; and 600-psig (4140-kPa) minimum CWP rating and blowout-proof stem.
 - 3. Calibrated-Orifice Balancing Valves: Bronze body, ball type, 125-psig (860-kPa) working pressure, 250 deg F (121 deg C) maximum operating temperature; with calibrated orifice or venture, connection for portable differential pressure meter with integral seals, threaded ends, and equipped with a memory stop to retain set position.
 - 4. Y-Pattern, Hot-Water Strainers: Cast-iron body (ASTM A 126, Class B); 125-psig (860-kPa) minimum working pressure; with threaded connections, bolted cover, perforated stainless-steel basket, and bottom drain connection. Include minimum NPS 1/2 (DN 15) threaded pipe and full-port ball valve in strainer drain connection.
 - 5. Wrought-Copper Unions: ASME B16.22.
- J. Basic Unit Controls:
 - 1. Control voltage transformer.
 - 2. Wall-mounting or Unit-mounted thermostat with the following features. (See plans)
 - a. Heat-off switch.
 - b. Fan on-auto switch.
 - c. Manual fan speed switch.
 - d. Adjustable deadband.
 - e. Exposed set point.
 - f. Exposed indication.
 - g. Deg F (Deg C) indication.
 - 3. Unoccupied period override push button.
 - 4. Data entry and access port.
 - a. Input data includes room temperature, and occupied and unoccupied periods.
 - b. Output data includes room temperature, supply-air temperature, entering-water temperature, operating mode, and status.
- K. Electrical Connection: Factory wire motors and controls for a single field connection.

2.2 PROPELLER UNIT HEATERS

- A. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - 1. International Environmental Company.
 - 2. McQuay International.
 - 3. Trane.

- B. Description: An assembly including casing, coil, fan, and motor in vertical discharge configuration with adjustable discharge louvers.
- C. Comply with UL 2021.
- D. Cabinet: Removable panels for maintenance access to controls.
- E. Cabinet Finish: Manufacturer's standard baked enamel applied to factory-assembled and -tested propeller unit heater before shipping.
- F. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- G. Discharge Louver: Adjustable fin diffuser for horizontal units and conical diffuser for vertical units.
- H. Hot-Water Coil: Test and rate hot-water propeller unit heater coils according to ASHRAE 33. Copper tube, minimum 0.025-inch (0.635-mm) wall thickness, with mechanically bonded aluminum fins spaced no closer than 0.1 inch (2.5 mm) and rated for a minimum working pressure of 200 psig (1380 kPa) and a maximum entering-water temperature of 325 deg F (163 deg C), with manual air vent. Test for leaks to 350 psig (2413 kPa) underwater.
- I. Electric-Resistance Heating Elements: Nickel-chromium heating wire, free from expansion noise and 60-Hz hum, embedded in magnesium oxide refractory and sealed in steel or corrosion-resistant metallic sheath with fins no closer than 0.16 inch (4 mm). Element ends shall be enclosed in terminal box. Fin surface temperature shall not exceed 550 deg F (288 deg C) at any point during normal operation.
 - 1. Circuit Protection: One-time fuses in terminal box for overcurrent protection and limit controls for high-temperature protection of heaters.
 - 2. Wiring Terminations: Stainless-steel or corrosion-resistant material.
- J. Fan: Propeller type with aluminum wheel directly mounted on motor shaft in the fan venturi.
- K. Fan Motors: Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Type: Permanently lubricated.
- L. Control Devices: Unit-mounted or Wall-mounting thermostat. (See plans).

2.3 WALL AND CEILING HEATERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Berko Electric Heating; a division of Marley Engineered Products.
 - 2. Chromalox, Inc.; a division of Emerson Electric Company.
 - 3. Indeeco.
 - 4. Markel Products; a division of TPI Corporation.
 - 5. QMark Electric Heating; a division of Marley Engineered Products.
 - 6. Trane
- B. Description: An assembly including chassis, electric heating coil, fan, motor, and controls. Comply with UL 2021.
- C. Cabinet:
 - 1. Front Panel: Stamped-steel louver or Extruded-aluminum bar grille, with removable panels fastened with tamperproof fasteners. (See plans)
 - 2. Finish: Baked enamel over baked-on primer with manufacturer's standard color selected by Architect, applied to factory-assembled and -tested wall and ceiling heaters before shipping.

Unit Heaters Page 4 of 6 Section 238239

- 3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- D. Surface-Mounting Cabinet Enclosure: Steel with finish to match cabinet.
- E. Electric-Resistance Heating Coil: Nickel-chromium heating wire, free from expansion noise and hum, embedded in magnesium oxide refractory and sealed in corrosion-resistant metallic sheath. Terminate elements in stainless-steel, machine-staked terminals secured with stainless-steel hardware, and limit controls for high temperature protection. Provide integral circuit breaker for overcurrent protection.
- F. Fan: Aluminum propeller directly connected to motor.
 - 1. Motor: Permanently lubricated, multispeed.
- G. Controls: Unit-mounted thermostat. Low-voltage relay with transformer kit.
- H. Electrical Connection: Factory wire motors and controls for a single field connection with disconnect switch.
- I. Baseboard and pedestal electric heaters shall be minimum 12ga Aluminum cabinet enclosure with nickel-chromium wire and aluminum fins bonded to stainless steel tube.

2.4 ELECTRIC INFRARED HEATERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Berko Electric Heating; a division of Marley Engineered Products.
 - 2. Chromalox, Inc.; a division of Emerson Electric Company.
 - 3. Indeeco.
 - 4. Markel Products; a division of TPI Corporation.
 - 5. QMark Electric Heating; a division of Marley Engineered Products.
- B. Description: High density medium wave radiant heat assembly including chassis, electric infrared heating element, and controls.
- C. Housing & Construction: .040 Gold anodized Aluminum housing for efficient, long-term reflectivity and corrosion resistance. High-density radiant heat. Housing is ETL Listed for indoor, dry environment applications only. Made in U.S.A."
- D. Reflector: 60 degree symmetric heat pattern, reference the sizing chart to determine overall coverage based on the mounting height.
- E. Elements: Heavy duty flat panel emitter.
- F. Controls: Flat panel emitter heaters are not manufactured with any control device on the unit. All controls and accessories should be specified as remote mounted. Please consult the technical sales department of factory for help in determining applicable controls. Please follow installation instructions that accompany each heater.
- G. Radiant ceiling panels shall be 2' x 2' or 2' x 4' size as shown on plans. Lay-in units shall fit standard Lay-in ceiling grid and match adjacent ceiling tiles.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install unit heaters to comply with NFPA 90A.
- B. Suspend cabinet unit heaters from structure with elastomeric hangers.

Unit Heaters Page 5 of 6 Section 238239

- C. Suspend propeller unit heaters from structure with all-thread hanger rods and spring hangers.
- D. Install wall-mounting thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.
- E. Unless otherwise indicated, install union and gate or ball valve on supply-water connection and union and calibrated balancing valve on return-water connection of unit heater.
- F. Install new filters in each fan-coil unit within two weeks of Substantial Completion.
- G. Install piping adjacent to machine to allow service and maintenance.
- H. Connect piping to cabinet unit heater's factory, hot-water piping package. Install the piping package if shipped loose.
- I. Connect supply and return ducts to cabinet unit heaters with flexible duct connectors.
- J. Comply with safety requirements in UL 1995.
- K. Ground equipment.
- L. Connect wiring.

3.2 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
 - 3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
- B. Remove and replace malfunctioning units and retest as specified above.

BASIC ELECTRICAL REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to all Sections of Division 26, 27, and 28. All of the electrical related work required for this project (unless noted otherwise) is a part of the electrical contract price and is not necessarily specified under Division 26, 27, 28 or shown on the electrical drawings. Therefore, all divisions of this specification and all drawings shall be consulted. The more stringent requirement of this specification (or drawings) shall be followed; regardless of what division or section the more stringent requirement resides.

1.2 SUMMARY

- A. This Section includes the following:
 - Related Documents.
 - b. Summary.
 - c. References.
 - d. General.
 - e. Submittal Information.
 - f. Quality Assurance, Regulations, and Codes.
 - g. Coordination.
 - h. Permits and Fees.
 - i. Electrical demolition.
 - j. Renovation and Remodel.
 - k. Cutting and patching for electrical construction.
 - 1. Painting.
 - m. Aligning, Adjusting and Testing.
 - n. Substitution of Equipment.
 - o. Materials Approved as Equal.
 - p. As-built Drawings.
 - q. Operating Instructions, Brochures, and Manuals.
 - r. Punch-list and Final Inspection.
 - s. Guarantee.

1.3 REFERENCES

- A. The latest edition of the following standards and codes, standard publications of professional organizations, and the local authorities having jurisdiction are the minimum requirements for this work.
 - a. American National Standards Institute (ANSI).
 - b. American Society for Testing and Materials (ASTM).
 - c. Association of Edison Illuminating Companies (AEIC).
 - d. Code of Federal Regulations (CFR).
 - e. Insulated Cable Engineer's Association (ICEA).
 - f. Institute of Electrical and Electronic Engineers (IEEE).
 - g. National Electrical Manufacturer's Association (NEMA).
 - h. National Fire Protection Association (NFPA).
 - i. NFPA 70, the National Electrical Code (NEC).

- j. Underwriters' Laboratories, Inc. (UL).
- k. State, City, and Local Authorities.

1.4 GENERAL

- A. The Electrical Contractor shall furnish all labor; materials, tools, transportation, equipment, services and facilities, required for the complete and proper installation of all electrical work specified within the contract documents. The electrical installation shall include all materials, devices, apparatus, and equipment as specified herein, as shown on the drawings, AND as required for a complete and operational system.
- B. Experienced, qualified, licensed electricians shall install the entire electrical system in a first class, workmanlike manner. The electrical system shall be left completely connected and ready to give continuous, trouble-free service.
 - a. TO ENSURE THAT ONLY QUALIFIED AND RESPONSIBLE BIDS ARE CONSIDERED, SUBMIT THE FOLLOWING INFORMATION ATTACHED TO THE BID FORM:
 - b. List the date of your company's incorporation, and the state of which the company is incorporated. List the number of years in business under current corporate name.
 - c. List your company's President, Vice-President(s), Treasurer's, and Secretary's names.
 - d. List jurisdictions and trade categories in which your organization is legally qualified to do business, and indicate registration or license numbers of company and all personnel who plan to work on this project.
 - e. List the category of work your organization normally performs with its own forces.
 - f. Claims & Suits: List any judgments, claims, arbitration proceedings, suits, or disputes (previous or ongoing) against your organization or its officers. List any arbitration proceedings or suits (previous or ongoing) that your organization has filed with regard to construction contracts within the last five years.
 - g. List, within the last five years, any officers of your organization that were officers of another organization that failed to complete a construction contract.
 - h. List the name of the job foreman that will be assigned to this project and include his/her work history with the company and with any previous companies. List this persons construction experience and present commitments of other projects. List any other key individuals of your organization who will be assigned to this project.
 - i. List a minimum of Five (5) previous projects of similar size and characteristics to this project, which were completed by your organization and the foreman listed above. Provide the name of each project, owner, architect, contract amount, project location, and the date project was completed.
 - j. List all major construction projects that your organization has in progress, giving the name of project, owner, architect, contract amount, percent complete and scheduled completion date.
 - k. State the total amount of work in progress and under contract by your company at time of submitting bid for this project.
 - 1. State average annual amount of construction work performed during the past five years.
 - m. References: Provide a minimum of Three (3) Trade References.
- C. The electrical drawings are shown in a schematic form (unless specifically dimensioned) and are intended to show only the approximate locations of devices, and equipment. This does not grant the contractor permission to locate devices and equipment as he sees fit.

- a. Exact equipment locations, device placement, and conduit routings are not specified on the drawings (unless dimensioned) and shall be governed by structural conditions, ceiling/wall panel spacing, base cabinets, permanent furniture and other obstructions.
- b. Full coordination of all work and consultation of all drawings shall be required to avoid possible interference with other trades. The architectural plans shall be consulted to determine space availability for electrical equipment prior to rough in.
- c. The Architect reserves the right to make any reasonable change in the location of apparatus, outlets and equipment up to the time of rough in, without any additional expense to the Owner. <u>Relocating a receptacle outlet 6ft. in any direction is considered a reasonable change.</u>
- D. Any damage to the building or elements of the building including other trades work (accidental or intentional) caused by or originating from the Contractor shall be repaired at the cost of the Contractor.
- E. All electrical components shall be installed per the respective manufacturer's installation instructions.

1.5 SUBMITTAL INFORMATION

- A. The Electrical Contractor shall submit electronic submittals in PDF format which shall include the following information:
 - a. On front cover provide the name and address of the Project, the Architect, the Engineer, and the Contractor. List the name and telephone number for the Electrical Contractor assigned to the project.
 - b. Adequate description(s) of product submitted Manufacturer's name, catalog number, technical data, shop drawings, pictures, etc. Include wiring diagrams, photometries, and test reports as required.
 - c. Instructions for the operation and maintenance of the equipment prepared by the manufacturer.
 - d. Complete parts list for each equipment item.
 - e. Clearly marked catalog logic indicating mounting, finishes, capacities, sizes, options, etc.
 - f. Identification mark or nomenclature relating each submitted item to the drawings (when applicable). For example, Panel "A", Light Fixture Type "B", or Special Outlet No. 1.
- B. The submittal review performed by the Architect-Engineer shall not include verification or approval of quantities indicated on the submittal. All submittal approvals relate to the product's <u>conformance</u> with the contract documents only.
- C. All submittals must be reviewed, verified, and approved by the ELECTRICAL contractor before the Architect or Engineer will review same. Submittals reviewed and stamped by the General Contractor only, will be returned. The ELECTRICAL contractor's stamp and signature on each submittal shall indicate the Contractors review. The Contractor shall return all submittals, which do not meet the specifications, to the supplier for correction before submitting to the Engineer or Architect. Only those materials specified, approved, or otherwise indicated by the contract documents will be permitted on this project.
- D. The Architect-Engineer's submittal approval will not relieve the Contractor from his responsibilities to full-fill the contract documents. All deviations from the contract documents associated with submittals must be called to the Engineer's attention at time of submission and must also be approved by the Owner or his representative.
- E. Shop drawings shall be submitted on wiring devices, conduit, boxes, wire, light fixtures (includes LED drivers, ballasts & lamps), light poles, switchgear (includes distribution and branch circuit panelboards, starters and disconnects), and all special systems (fire alarm, intercom, clocks, sound, security, telephone, data, etc.). Refer to each respective division 26 section for additional submittal requirements.

F. Electronic Autocad files (.dwg) may be made available to the successful contractor for the sole purpose of creating submittal drawings related to this project. The Contractor shall execute a Cad Release agreement and submit a fee equal to \$100 per drawing sheet, prior to receiving the files.

1.6 QUALITY ASSURANCE, REGULATIONS, & CODES

- A. All Electrical Components, Devices, Equipment, and Accessories installed under this contract shall be listed and labeled by Underwriters Laboratories, Inc. (UL). Materials, which are not covered by UL shall be listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. The Architect/Engineer must specifically approve materials that do not carry the UL label.
- B. All Electrical Components, Devices, Equipment, and Accessories installed under this contract shall be of the brand(s) specified herein, or approved as an equal by the Architect/Engineer within the contract documents. All materials and equipment furnished shall be new, free from defects, and of current production. Materials and equipment, which are no longer being produced, will not be acceptable.
- C. Each class of materials or equipment shall be of a single manufacturer. Do not intermix manufacturers of the same class of equipment. Manufacturers of all equipment shall have a permanent service organization, which will respond with service via telephone within 2 hours of request and in person (if necessary) within 24 hours of request.
- D. All electrical equipment and materials shall be received and stored by the Electrical Contractor in a manner which will protect the equipment and materials against physical damage, dirt, moisture, grease, etc. Conduit shall be kept closed and free of foreign objects.
- E. All electrical work shall comply with the latest rules and regulations of the National Electrical Code (NFPA 70), the Americans with Disabilities Act (ADA), the local ordinances (City, County, and State), the local utility companies and all other Boards, Codes, and Departments having jurisdiction. The electrical installation shall be performed in accordance with the latest Rules and Regulations of the Occupational Safety and Health Act (OSHA).
- F. All electrical work and material shown on the drawings or specified herein, which is determined to be in direct conflict with a code requirement or local ordinance, shall be provided and installed to meet the code or local ordinance. However, all electrical work indicated in the contract documents, which is determined to be in excess of code requirements or local ordinances, shall be performed as specified in the contract documents. Any deviations made from the plans and specifications in order to conform to codes, ordinances, laws, rules, or regulations shall be approved by the Architect and be made with no cost increase to the Owner. In cases where two or more codes have different levels of requirements (regarding the same topic), the more stringent code shall apply.

1.7 COORDINATION

- A. The electrical contractor shall visit the site and examine all existing conditions, which may affect work under his contract prior to bidding. Failure to visit the site and determine existing conditions is not a basis for additional compensation.
- B. Coordinate chases, slots, inserts, sleeves, and openings with general construction work and arrange in building structure during progress of construction to facilitate the electrical installations that follow.
 - a. Set inserts and sleeves in poured-in-place concrete, masonry work, and other structural components as they are constructed.
- C. Sequence, coordinate, and integrate the installation of electrical materials and equipment for efficient flow of work among all other trades. Perform work in such an order that there will be no unnecessary delays or interference with other trade installations. Coordinate the installation of large electrical equipment requiring positioning before closing in the building. Coordinate closely with the Mechanical

Contractor to allow for a clean and neat installation of conduit, cable tray, light fixtures, devices, plumbing, mechanical equipment, mechanical duct work, etc. above ceilings and in other concealed locations.

- D. Coordinate service connections to components and systems furnished by utility companies.
 - a. Coordinate installation and connection of exterior underground and overhead utilities and services, including provision for electricity-metering components with the utility company.
 - b. All electrical service entrance equipment and work shall comply with requirements of authorities having jurisdiction and of utility company providing electrical power.
 - c. The electrical contractor shall bear all expenses for the installation of the temporary and permanent electrical service to the building. These expenses include concrete filled guard posts around transformers and the installation of pedestals (when required by local utility company). The Electrical Contractor shall also pay for all deposits and reimbursements required for the service to the building.
 - d. The electrical contractor shall coordinate and bear all expenses involved in the complete telephone, internet, cable TV service conduit installations (include pull wire) per respective utility company requirements.
- E. Coordinate location of access panels and doors for electrical items that are concealed by finished surfaces. Access doors and panels are specified in Division 8 Section "Access Doors."
- F. Where electrical identification devices are applied to field-finished surfaces, coordinate installation of identification devices with completion of finished surface.
- G. Where acoustical ceilings and similar finishes will conceal electrical identification markings and devices, coordinate installation of these items before ceiling installation.

1.8 PERMITS AND FEES

- A. The Electrical Contractor shall pull all permits required for this project. He shall pay for all fees related to the certificates, permits, licenses, and inspections.
 - a. These items must be submitted to the Architect before final acceptance of the project is granted.

1.9 ELECTRICAL DEMOLITION

- A. Demolish (disconnect and remove) all electrical items as noted or shown on the drawings back to source. Sequence work with other trade demolition.
- B. The Electrical Contractor shall be responsible for all electrical demolition associated with architectural, structural, and mechanical demolition of this project. Refer to the architectural, structural and mechanical plans and specifications for areas/items required to be demolished. Verify all questionable electrical items with the General Contractor prior to demolition.
 - a. Remove all existing electrical equipment, devices, conduit, conductors, etc. associated with areas/items of demolition back to source.
 - b. Cut and cap abandoned raceways, which can not be entirely removed due to concrete encasement or other inaccessibility. Provide blank plates as required and/or patch to match existing adjacent surface(s).
- C. Remove all demolished electrical material from the site periodically to prevent damage to new equipment or injury to personnel.
- D. The Owner shall reserve the right to salvage any and all electrical components, which are removed by the Electrical Contractor during the demolition phase (unless specifically noted otherwise).

a. Coordinate with the Owner or his authorized representative prior to commencing with the demolition phase and verify which items are to be salvaged and returned to the Owner.

1.10 RENOVATION AND REMODEL

- A. The Electrical Contractor shall fully familiarize himself with the existing systems (electrical power, fire alarm, intercom, security, telephone, computer networking, sound, clocks, bells, etc.) of the building to be renovated or remodeled.
 - a. Consult existing system manufacturers for ALL interconnection requirements between new devices and existing systems. Verify all required parts, prior to bidding the job and notify the Architect/Engineer of all conflicts such as capacity, availability, or obsolescence.
 - b. The Electrical Contractor shall be responsible for providing and installing ALL components necessary to interconnect new devices to existing systems even though not specifically shown on the drawings or called out in the specifications.
- B. The Electrical Contractor shall be responsible for properly supporting (per N.E.C.) ALL existing conduit and cable encountered during the renovation process.
- C. Relocate all existing electrical items as shown on the drawings or <u>as required by the Architect to</u> facilitate work by other trades.
 - a. Relocate switches, fixtures, outlets, boxes, conduit, panelboards, and all other electrical components in order to meet the intent of the architectural plans (for example, relocate items where new doors are installed in existing walls).
 - b. Consult system manufacturers for specific requirements when applicable.
 - c. Provide and install all components required for the relocation of all electrical items (wire, cable, conduit, boxes, coverplates, fasteners, etc.).
 - d. Relocate all "special systems" components as required. For example, if a reception or office area is being relocated, all of the special systems associated with that area shall be relocated to the new reception or office.

1.11 CUTTING & PATCHING

- A. The Contractor shall be responsible for cutting and/or patching any building material necessary to complete the installation of the electrical system.
 - a. Use a "Concrete Termite" drill or "core" drill when drilling through concrete. Do not use a "hammer drill", "air hammer" or "star drill".
 - b. Use "link-seal" products by Thunderline Corporation after drilling through exterior basement or foundation walls.
- B. Qualified workmen of the trade involved shall do all cutting and patching.
- C. The Electrical Contractor shall pay for cutting and patching due to Electrical Contractors failure to coordinate at the time of rough in.

1.12 PAINTING

- A. All electrical raceways and equipment installed in finished areas (defined by the Architect) shall be painted in accordance with division 9 "painting" section (unless directed otherwise by the Architect).
- B. All electrical equipment requiring touch-up painting due to shipping and handling abuse or any other reason shall be painted to match the adjacent surface (color and quality).

1.13 ADJUSTING, ALIGNING AND TESTING

- A. The Electrical Contractor shall keep a calibrated voltmeter, ammeter, ground test meter, infrared scanner, and megohm meter on site and available at all times during construction hours. Provide test readings as required by these specifications and as requested by the Engineer.
 - a. The electrical load shall be distributed equally across all phases from the service entrance equipment down to the smallest branch circuit panelboard. Keep a record of all adjustments and submit final voltage and amperage readings (each phase) to the Architect.
 - b. After the project is substantially completed, perform dielectric testing in accordance with the requirements of the National Electrical Code. The entire system shall test out to be free from short circuits and open circuits.
- B. Check, align, and adjust all components of the electrical system for optimum performance. Perform all tests required by these specifications refer to each division 26 section for specific test requirements.
- C. The Owner reserves the right to conduct independent Acceptance Tests on the electrical system as he sees fit. These tests, if performed, will be used to determine compliance of these specifications and will be conducted in the presence of the Architect/Engineer and Contractor. Notification of these independent tests will be given a minimum of five (5) working days prior to execution. The contractor shall correct all deficiencies in materials and workmanship revealed by the Acceptance Tests.

1.14 SUBSTITUTION OF EOUIPMENT

- A. After execution of the contract, substitutions of equipment manufacturers and/or material manufacturers shall be permitted <u>only</u> when the equipment and/or material specified cannot be delivered to the job in time to complete the work in proper sequence.
 - a. Any delay must originate beyond the control of the contractor; otherwise the substitution will not be approved.
 - b. The Electrical Contractor must make substitution requests in writing. Written requests shall be accompanied with documentation from the specified manufacturer and from the proposed manufacturer indicating equality, differences in price, and differences in delivery dates.
 - c. The Owner shall receive all credits associated with the approved substitution via change order.

1.15 MATERIALS APPROVED AS EQUAL

A. All materials used for this project shall be provided as specified (manufacturer's name and model number) unless changes to the contract documents are formally made by written addendum prior to the opening of bids.

1.16 AS-BUILT DRAWINGS

- A. Prepare two (2) sets of blue-line or black-line electrical drawings showing in <u>red ink</u> ALL changes or deviations made from the original plan design. These changes marked in red ink shall also include all addendum items, change orders, etc.
 - a. These drawings shall be clean, neat and without tears or stains. Do not use the field set of drawings as these required As-Built drawings.
 - b. These drawings are to be submitted to the Engineer for review and will be forwarded to the Owner for his future reference.

1.17 OPERATING INSTRUCTIONS, BROCHURES, AND MANUALS

A. The Electrical Contractor shall submit ALL operating instructions, brochures, instruction sheets, and manuals, which are provided with (or available with) new equipment to the Architect for transmittal to

the Owner. Provide this information in a neat, organized format and present the information in a 3-ring binder. Label the front cover with the follow information:

- a. "Electrical Operating Instructions, Brochures, and Manuals for Facility Systems"
- b. Project Name and Address
- c. Name and Address of Architect
- d. Name and Address of Engineer
- e. Name and Address of Contractor
- f. Contractor's Telephone Number (including emergency number).
- B. Save all adjusting tools, wrenches, keys, etc. which may be provided with new equipment, and submit to the Architect for transmittal to the Owner.
- C. The Electrical Contractor and/or special systems sub-contractor shall also provide full explanation (as well as any written material) to the Owner regarding the operation, maintenance, and care of each special system. Special systems include Fire Alarm, Intercom, Clock, Sound, Intrusion Detection, Cable TV, and Voice/Data.

1.18 PUNCH-LIST AND FINAL INSPECTION

- A. An initial inspection will be performed upon written notification from the Contractor indicating that the job is <u>complete</u>. The Engineer will generate a punch-list after the initial inspection. This punch list will be transmitted to the contractor for execution.
 - a. The Electrical Contractor shall be present for the initial inspection and shall provide all tools, ladders, meters, instruments, etc. required for a complete and thorough inspection (removal of coverplates, panelboard covers, ceiling tiles, etc.).
- B. A Final Inspection by the Engineer will be performed after the contractor has executed all punch-list items.
 - a. The intent of the Final Inspection is for the Contractor and Architect-Engineer to verify that the completed project is in conformance with the contract documents.
 - b. The Electrical Contractor shall be present for the Final Inspection and shall again provide all tools, ladders, meters, instruments, etc. required for a complete and thorough inspection (removal of coverplates, panelboard covers, ceiling tiles, etc.).
 - c. Additional inspections by the Architect-Engineer due to incomplete or incorrect work will be charged to the Contractor at an hourly rate of \$120.00 per man-hour.

1.19 GUARANTEE

- A. This Contractor shall guarantee the entire electrical installation for a period of one (1) year. The one-year period will start on the date of final completion and acceptance (by the Architect).
 - a. Should defective or faulty parts, components, equipment, etc. become evident within this one-year period, the Electrical Contractor shall correct and/or replace the defective component without cost to the Owner.
 - b. In addition to defective components, the Electrical Contractor shall also guarantee the installation of the electrical system. The electrical work associated with this project is guaranteed by the Electrical Contractor to be first-class, executed by experienced workmen, and installed to comply with the contract documents. The Electrical Contractor shall correct all areas of the building showing poor workmanship or incomplete installations (such as loose joints & connections involving the raceways & conductors).

PART 2 - PRODUCTS (not applicable)

PART 3 - EXECUTION (not applicable)

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Building wires and cables rated 600 V and less.
 - 2. Connectors, splices, and terminations rated 600 V and less.

1.2 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Southwire Company
 - 2. General Cable Technologies Corporation
 - 3. Cerrowire LLC
 - 4. <u>Encore Wire Corporation</u>
 - 5. AFC Cable Systems
- B. Use Copper Conductors Only: UL-Listed, comply with NEMA WC 70. All conductor sizes are based on the use of copper materials and are code required minimum sizes. Conductor sizes exceeding ampacity requirements of the circuit are sized for voltage drop and shall be installed as indicated.
- C. Conductor Insulation: Comply with NEMA WC 70 for TypesTHHN-THWN-2.
- D. Minimum Size: Wire smaller than No. 12 AWG shall not be used unless specifically indicated herein or on the drawings.
 - 1. No. 14 AWG (or larger) copper, solid or stranded, 90° C. wire shall be permitted for control wiring applications. Where stranded conductors are used, provide with spade type insulated copper terminals.

2.2 CONNECTORS AND SPLICES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Hubbell Power Systems, Inc.
 - 2. O-Z/Gedney; EGS Electrical Group LLC.
 - 3. 3M; Electrical Products Division.
 - 4. Ideal Industries, Inc.
 - 5. ILSCO

- B. Description: UL-Listed, Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.
- C. Conductors smaller than or equal to No. 8 AWG are permitted to be spliced or tapped with spring pressure, screw-on, pre-insulated connectors rated for the circuit involved.
- D. Conductors larger than No. 8 AWG shall be spliced with compression connectors (fully insulated).

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders & Branch Circuits: **Copper**. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

3.2 CONDUCTOR INSULATION, APPLICATIONS AND WIRING METHODS

- A. Service Entrance and all other underground circuits: Type THWN-2, single conductors in raceway.
- B. Feeders & Branch Circuits: Type THHN/THWN-2, single conductors in raceway.
- C. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wiremesh, strain relief device at terminations to suit application.
- D. Class 1 Control Circuits: Type THHN-THWN, in raceway.
- E. Class 2 Control Circuits: Type THHN-THWN, in raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Install wires and cables as indicated, according to manufacturer's written instructions and NECA's "Standard of Installation."
- B. Conceal conductors & cables in finished walls, ceilings, and floors, unless otherwise indicated via raceway.
- C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- E. Install exposed conductors & cables (in raceway) parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."
- G. Identify and Color-code conductors and cables according to Section 260553 "Identification for Electrical Systems." Note: All conductors shall have fully colored, factory applied insulation.
- H. Seal around cables/raceways penetrating fire-rated elements according to Section 078413 to restore original fire-resistance rating of assembly. Seal cable and wire (between conduit and conductor) entering a building from underground where the conductor(s) exit the conduit, with a non-hardening compound listed for such use.
- I. Neatly form and tie all wires inside panelboards, cabinets, wireways, switches, equipment enclosures, etc.

- J. Install cable supports (split wedge type) inside raceways for all vertical feeder runs in accordance with the NFPA 70.
- K. Where quantities of conductors in a raceway system are not shown / missing on the drawings, provide the number as required to maintain function, control and number of circuits indicated.
- L. Do not share the neutral conductor across phases. Provide dedicated neutral conductor per phase conductor.
- M. Maximum of (3) 20A-1P branch circuits per raceway.
- N. Do not route branch circuits from one panelboard through another panelboard (can). All branch circuits shall exit the source panelboard via "homerun" raceway(s).

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- B. Electrical Connections: Connect outlets and components to wiring and to ground as indicated and instructed by manufacturer and per NFPA 70 Article 110.14. See receptacle wiring detail on drawings.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 8 **inches** of slack.
- D. All wires shall be routed within conduit, shall be of the same insulation type and shall be continuous between outlets and boxes (no splices or taps in conduit).
- E. Keep all splicing to a minimum. Splicing will not be allowed in panelboards, switchboards or other enclosures where the conductor(s) are to be terminated.
 - 1. Make splices and taps that are compatible with conductor material (copper) and that possess equivalent or better mechanical strength and insulation ratings than un-spliced conductors. All conductor splices larger than #6AWG shall be spliced using compression method insulated with a heavy wall shrink tubing.
 - 2. Unsatisfactory splices or terminations shall be re-worked as directed by the Engineer at no additional cost to the Owner.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test conductors for compliance with requirements.
 - 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Test electrical insulation using megger testing. Certify compliance with test parameters.
 - 3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in cables and conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner.
 - a. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each splice 11 months after date of Substantial Completion.
 - b. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

- c. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
- C. Test Reports: Prepare a written report to record the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
- D. Remove and replace malfunctioning units and retest as specified above.

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes grounding of electrical systems and equipment. Grounding requirements specified in this Section may be supplemented by special requirements of systems described in other Sections.

1.2 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 and NFPA 70, Article 250 for grounding and bonding methods, materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

- A. Insulated Conductors: Use only **Copper** wire or cable insulated for 600 V. Comply with Section 260519 Low Voltage Electrical Power Conductors and Cables.
 - 1. Equipment Grounding Conductors: Insulated with green-colored insulation.
 - 2. Isolated Ground Conductors: Insulated with green-colored insulation with yellow stripe. On feeders with isolated ground, use factory colored green w/yellow stripe, continuous over length of conductor.
- B. Grounding Electrode Conductors: #6 solid, larger sizes to be stranded cable
- C. Underground Conductors (exposed): Bare, tinned, stranded, unless otherwise indicated.
- D. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
 - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch (6 mm) in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
 - 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
- E. Grounding Bus: Predrilled rectangular bars of annealed copper, **1/4 by 4 inches** in cross section, with 9/32-inch holes spaced 1-1/8 inches apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V. Lexan or PVC, impulse tested at 5000 V.

2.2 CONNECTORS

- A. Comply with IEEE 837 and UL 467; Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
 - 1. Pipe Connectors: Clamp type, sized for pipe.
- C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- D. Bus-bar Connectors: Mechanical type, cast silicon bronze, solderless **compression** type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.3 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; sectional type ¾"dia. by 10 feet (19 mm by 3 m).

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No. **8** AWG and smaller, and stranded conductors for No. **6** AWG and larger unless otherwise indicated.
- B. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe.
- C. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors.
 - 3. Connections to Ground Rods: Welded connectors.
 - 4. Connections to Structural Steel: Welded connectors.

3.2 GROUNDING INSTALLATION

- A. General: At the service entrance equipment, bond the service entrance ground bus, the service entrance neutral bus, the secondary service neutral conductor, the service entrance grounding electrode conductor(s) and the service entrance enclosure together at the point of service disconnect per NFPA 70 Article 250. This will establish the Grounding Electrode System (GES). For remodel projects and building additions, the existing GES shall be verified to be installed per these specifications. Otherwise, provide & install additional grounding to meet specifications.
 - 1. Comply with NFPA 70, Article 250, for types, sizes, and quantities of equipment grounding conductors, unless specific types, larger sizes, or more conductors than required by NFPA 70 are indicated.
 - 2. Install equipment-grounding conductors in all feeder and branch circuit raceways.
 - 3. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
 - 4. Bonding Straps and Jumpers: Install so vibration by equipment mounted on vibration isolation hangers and supports is not transmitted to rigidly mounted equipment. Use exothermic-welded connectors for outdoor locations, unless a disconnect-type connection is required; then, use a

bolted clamp. Bond straps directly to the basic structure taking care not to penetrate any adjacent parts. Install straps only in locations accessible for maintenance.

- B. Ground Rods: Install at least two rods spaced at 10 feet apart.
 - 1. Drive ground rods until tops are 2 inches above finished floor or final grade, unless otherwise indicated.
 - 2. Interconnect ground rods with grounding electrode conductor and connect to the main service disconnect ground bus.
 - 3. Make all connections to the rods using <u>exothermic welds</u>, without exposing steel or damaging copper coating.
- C. Metal Water Service Pipe (supplemental ground): Provide #3/0 insulated copper grounding conductor, in conduit, from building's main service disconnect ground bus, to main metal water service entrance(s) to building using grounding clamp connectors. Where a dielectric main water fitting is installed, connect grounding conductor to street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
- D. Building Steel: Provide #3/0 insulated copper grounding conductor, in conduit, from building's main service disconnect ground bus, to the building steel.
- E. Building Foundation Ufer: Provide a 20 ft. #3/0 bare copper grounding conductor, incased in the building footing and connected to the reinforcing rebar in at least four locations, from building's main service disconnect ground bus, to the building footing.
- F. All raceway bodies (conduit, nipples, wireways, troughs, gutters, etc.) housing phase conductors shall be provided with a full-length "green" insulated grounding/bonding conductor sized according to the respective phase conductors per the latest edition of the National Electrical Code.

3.3 LABELING

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems" for instruction signs. The label or its text shall be green.
- B. Install labels at the telecommunications bonding conductor and grounding equalizer and at the grounding electrode conductor where exposed.
 - 1. Label Text: "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

3.4 CONNECTIONS

- A. General: Make connections so galvanic action or electrolysis possibility is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.
 - 1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer to order of galvanic series.
 - 2. Make connections with clean, bare metal at points of contact.
 - 3. Make aluminum-to-steel connections with stainless-steel separators and mechanical clamps.
 - 4. Make aluminum-to-galvanized steel connections with tin-plated copper jumpers and mechanical clamps
 - 5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces
- B. Exothermic-Welded Connections at all ground rods: Comply with manufacturer's written instructions. Welds that are puffed up or that show convex surfaces indicating improper cleaning are not acceptable.

- C. Equipment Grounding Conductor Terminations: For No. 8 AWG and larger, use pressure-type grounding lugs. No. 10 AWG and smaller grounding conductors may be terminated with winged pressure-type connectors.
- D. Noncontact Metal Raceway Terminations: If metallic raceways terminate at metal housings without mechanical and electrical connection to housing, terminate each conduit with a grounding bushing. Connect grounding bushings with a bare grounding conductor to grounding bus or terminal in housing. Bond electrically noncontinuous conduits at entrances and exits with grounding bushings and bare grounding conductors, unless otherwise indicated. Typical application occurs where service entrance feeders stub up through slab with GRS raceways.
- E. Tighten screws and bolts for grounding and bonding connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A.
- F. Compression-Type Connections: Use hydraulic compression tools to provide correct circumferential pressure for compression connectors. Use tools and dies recommended by connector manufacturer. Provide embossing die code or other standard method to make a visible indication that a connector has been adequately compressed on grounding conductor.
- G. Moisture Protection: If insulated grounding conductors are connected to ground rods or grounding buses, insulate entire area of connection and seal against moisture penetration of insulation and cable.

3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections and prepare test reports:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal. Make tests at ground rods before any conductors are connected. Perform tests by using clamp-on ground resistance meter.
- B. Report measured ground resistances that exceed the following values:
 - 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 - 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 - 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
- C. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Engineer promptly and include recommendations to reduce ground resistance.
- D. Provide drawings locating each ground rod and other grounding electrodes, identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location and include observations of weather and other phenomena that may affect test results.

HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.

1.2 PERFORMANCE REQUIREMENTS

- A. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.
- B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- C. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.3 QUALITY ASSURANCE

A. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Allied Tube & Conduit.
 - b. Cooper B-Line, Inc.; a division of Cooper Industries.
 - c. ERICO International Corporation.
 - d. GS Metals Corp.
 - e. Thomas & Betts Corporation.
 - f. Unistrut; Tyco International, Ltd.
 - g. Wesanco, Inc.
 - 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 - 3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 - 4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 - 5. Channel Dimensions: Selected for applicable load criteria.
- B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.
- C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

- D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.
- E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Hilti Inc.
 - 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 3) MKT Fastening, LLC.
 - 4) <u>Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.</u>
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 - 2) Empire Tool and Manufacturing Co., Inc.
 - 3) Hilti Inc.
 - 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 5) MKT Fastening, LLC.
 - 3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
 - 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
 - 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 - 6. Toggle Bolts: All-steel springhead type.
 - 7. Hanger Rods: Threaded steel.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.
- B. Maximum Support Spacing: All raceways shall have supports at a maximum spacing of 10-feet and within 3-feet of a box, fitting, elbow, or enclosure. Attach each raceway to each trapeze hanger using fasteners designed for the application.
- C. Minimum Hanger Rod Size for Raceway: Provide 3/8" dia. (minimum) threaded steel rods where required. Use galvanized steel materials on installations exposed to weather. Do not use chain, perforated plumbers strap, or wire for supporting raceways.
- D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with two-bolt conduit clamps.
- E. Spring-steel clamps designed for supporting single conduits with bolts may be used for 1 inch and smaller raceways serving branch circuits and communication systems above suspended ceilings.
- F. Conduit "bat-wing clips" may only be used for supporting flexible lighting whips to rod/wire.
- G. Junction boxes, pull boxes, fixtures, suspended ceilings, etc. are not approved supporting methods. All raceways shall be supported independently of all aforementioned items.
- H. Combination electrical box and conduit hanger/support products shall not be used (commonly known as "barely legal").

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMT may be supported by openings through structure members, as permitted in NFPA 70 and by the Structural Engineer.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).
- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.
 - 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
 - 6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts or Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69.

- 7. To Light Steel: Sheet metal screws.
- 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.
- E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.
- F. Support wall boxes to study using a horizontal, adjustable mounting bracket spanned between and attached to both study.
- G. Raceways, outlet boxes, panelboards, etc. shall not utilize plastic anchors for attachment to building elements. Plastic anchors will not be permitted for use at any location.
- H. When using straps, use two hole straps when supporting raceways. Do not use one hole straps.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

- A. Construct concrete bases of dimensions indicated but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
- B. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 "Cast-in-Place Concrete."
- C. Anchor equipment to concrete base.
 - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

- A. Touchup: Comply with requirements in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Metal conduits, tubing, and fittings.
 - 2. Nonmetal conduits, tubing, and fittings.
 - 3. Metal wireways and auxiliary gutters.
 - 4. Surface raceways.
 - 5. Boxes, enclosures, and cabinets.
 - 6. Handholes and boxes for exterior underground cabling.

1.2 **DEFINITIONS**

- A. EMT: Electrical metallic tubing.
- B. FMC: Flexible metal conduit.
- C. IMC: Intermediate metal conduit.
- D. LFMC: Liquidtight flexible metal conduit.
- E. RMC: Rigid metal conduit.
- F. RNC: Rigid nonmetallic conduit (Schedule 40 or 80 PVC).

1.3 COORDINATION

A. Coordinate layout and installation of raceways and boxes with other construction elements to ensure adequate headroom, working clearance, and access.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

- A. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. GRC: Comply with ANSI C80.1 and UL 6.
- C. IMC: Comply with ANSI C80.6 and UL 1242.
- D. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 - 1. Comply with NEMA RN 1.
 - 2. Coating Thickness: 0.040 inch, minimum.
- E. EMT: Comply with ANSI C80.3 and UL 797.
- F. FMC: Comply with UL 1; zinc-coated steel.
- G. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- H. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 - 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.

Raceways and Boxes For

2. Fittings for EMT:

- a. Material: **Steel** only. Do not use die-cast fittings.
- b. Type: **Set-screw or compression**.
- c. All EMT connectors shall have **insulated throats**.
- 3. Expansion Fittings: Steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
- 4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.
- I. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS, TUBING, AND FITTINGS

- A. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. RNC: Schedule 40 or 80 PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.
- C. LFNC: Comply with UL 1660.
- D. Fittings for RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.
- E. Fittings for LFNC: Comply with UL 514B.
- F. Solvent cements and adhesive primers shall have a VOC content of 510 and 550 g/L or less, respectively, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

- A. Description: Sheet metal, complying with UL 870 and NEMA 250, **Type 1 or Type 3R** unless otherwise indicated, and sized according to NFPA 70.
 - 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- C. Finish: Manufacturer's standard enamel finish.
- D. Wireway Covers: Screw type.

2.4 SURFACE RACEWAYS

- A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Types, sizes, and channels as indicated and required for each application, with fittings that match and mate with raceways.
- C. Tele-Power Poles:
 - 1. Material: Galvanized steel with ivory baked-enamel finish or Aluminum with clear anodized finish

Raceways and Boxes For Electrical Systems Hanney & Associates Architects 2. Fittings and Accessories: Dividers, end caps, covers, cutouts, wiring harnesses, devices, mounting materials, and other fittings shall match and mate with tele-power pole as required for complete system.

2.5 BOXES, ENCLOSURES, AND CABINETS

- A. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
- B. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.
- D. Metal Floor Boxes:
 - 1. Material: Cast metal or sheet metal.
 - 2. Type: **Fully adjustable**.
 - 3. Shape: Rectangular.
 - 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. Nonmetallic Floor Boxes: Nonadjustable, round or rectangular.
 - 1. Listing and Labeling: Nonmetallic floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- F. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.
- G. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 70 lb.
 - 1. Listing and labeling: Paddle fan outlet boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- H. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- I. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- J. Device Box Dimensions: 4 inches square by 2-1/8 inches deep. Gangable boxes are prohibited.
- K. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, **Type 1 or Type 3R** with continuous-hinge cover with flush, lockable latch unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.
- L. Cabinets:
 - 1. NEMA 250, **Type 1** or **Type 3R** galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 - 2. Hinged door in front cover with flush latch and concealed hinge.
 - 3. Key latch to match panelboards.
 - 4. Metal barriers to separate wiring of different systems and voltage.
 - 5. Accessory feet where required for freestanding equipment.
 - 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: **RMC** (galvanized rigid steel).
 - 2. Concealed Conduit, Aboveground: Rigid steel, IMC or as noted on plans.
 - 3. Underground Conduit: RNC, (schedule 40 or 80 PVC).
 - 4. Connection to Vibrating Equipment: **LFMC**.
 - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.
- B. Indoors: Apply raceway products as specified below unless otherwise indicated.
 - 1. Exposed, finished areas: Wiremold.
 - 2. Exposed, non-finished areas: **EMT**.
 - 3. Exposed and Subject to Severe Physical Damage: **GRC**.
 - 4. Concealed in Ceilings and Interior Walls and Partitions: **EMT**.
 - 5. Connection to Vibrating Equipment: FMC, except use LFMC in damp or wet locations.
 - 6. Damp or Wet Locations: **RMC**.
 - 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 **stainless steel** in institutional and commercial kitchens and damp or wet locations.

C. Minimum Raceway Size:

- 1. Interior: 1/2-inch trade size for metallic:
- 2. Exterior: 3/4-inch trade size for nonmetallic.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
 - 3. EMT: Use setscrew or compression, steel fittings. Comply with NEMA FB 2.10.
 - 4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.
- E. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.
- F. Install surface, exposed raceways only where indicated on Drawings or where impossible to conceal.
- G. Do not install nonmetallic conduit inside the building.

3.2 RACEWAY INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.
- B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- C. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

- D. Install raceways level and square and at proper elevations. Provide adequate headroom.
- E. Raceways shall not be used as a supporting means for materials other than their contents.
- F. Complete raceway installation before starting conductor installation.
- G. Use temporary closures to prevent foreign matter from entering raceways.
- H. Arrange stub-ups so curved portions of bends are not visible above finished slab.
- I. Install no more than the equivalent of four 90-degree bends in any conduit run. Make bends and offsets so ID is not reduced use standard bending machines. Bending methods which will crease or flatten raceway shall not be used. Keep legs of bends in the same plane and straight legs of offsets parallel, unless otherwise indicated. Support within 12 inches of changes in direction.
- J. Run concealed raceways, with a minimum of bends, in the shortest practical distance considering the type of building construction and obstructions, unless otherwise indicated.
- K. Install raceways parallel to or at right angles to nearby surfaces or structural members, and follow the surface contours as much as practical.
 - 1. Run parallel or banked raceways together, on common supports where practical.
 - 2. Make bends in parallel or banked runs from same centerline to make bends parallel. Use factory elbows only where elbows can be installed parallel; otherwise, provide field bends for parallel raceways.
 - 3. Run tight to structure wherever possible.
- L. Join raceways with fittings designed and approved for the purpose and make joints tight.
 - 1. Make raceway terminations tight. Use bonding bushings, locknuts or wedges at connections subject to vibration. Use bonding jumpers where joints cannot be made tight.
 - 2. Use insulating bushings and set-screw connectors to protect conductors.
 - 3. Tighten set screws of threadless, steel fittings with suitable tools.
- M. Conceal raceways within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- N. Raceways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.
 - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 - 3. Arrange raceways to keep a minimum of **1 inch** of concrete cover in all directions.
 - 4. Do not embed threadless fittings in concrete.
 - 5. Change from ENT to **GRC** before rising above floor.
- O. Stub-ups to Above Recessed Ceilings:
 - 1. Use EMT.
 - 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
- P. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- Q. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

Raceways and Boxes For Electrical Systems Hanney & Associates Architects

- R. Where stubbing out of concrete, wrap conduit with 0.010-inch- thick, pipe-wrapping plastic tape applied with a 50 percent overlap to prevent corrosion.
- S. Raceway Terminations:
 - 1. Where raceways are terminated with locknuts and bushings, align raceways to enter squarely and install locknuts with dished part against the box. Where terminations are not secure with 1 locknut, use 2 locknuts: 1 inside and 1 outside the box. Use insulated throat metal bushings to protect conductors.
 - 2. Where raceways are terminated with threaded hubs, screw raceways or fittings tightly into the hub so the end bears against the wire protection shoulder. Where chase nipples are used, align raceways so the coupling is square to the box and tighten the chase nipple so no threads are exposed.
- T. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.
- U. Surface Raceways:
 - 1. Install surface raceway with a minimum 2-inch radius control at bend points.
 - 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.
- V. Provide a ¾" (minimum) empty EMT raceway from each voice, data, TV, and fire alarm outlet to nearest accessible ceiling cavity. Terminate (bend) parallel with ceiling and provide insulated bushing for protection of low voltage wiring when entering/exiting raceway.
- W. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where an underground service raceway enters a building or structure.
 - 3. Where otherwise required by NFPA 70.
- X. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for **recessed and semi-recessed luminaires**, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations.
- Y. Raceways shall not be installed (routed horizontally) on roofs without written approval from the engineer.

3.3 BOX INSTALLATION: Install boxes, as indicated below, and according to manufacturer's written instructions.

- A. All outlets for receptacles and lighting fixtures, and low voltage (voice, data, TV, intercom, etc.) shall be 4-inch square, code gauge steel galvanized knockout boxes (depth as required for service and device used).
 - 1. Concrete installations: Boxes shall be installed in forms of exact dimensions from bench marks, columns, walls or floors.

- 2. Masonry installations: Boxes shall be roughed in to general location before installation of walls and furring. Set to exact dimensions at time of wall installation.
- B. Mount boxes at heights indicated. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to **bottom** of box unless otherwise indicated or required by ADA.
 - 1. Mount all light fixture boxes over mirrors in restrooms to allow for a 2-inch separation between fixture and mirror.
 - 2. Standard switch mounting heights are 4'-0" A.F.F.
 - 3. Standard receptacle mounting heights are 1'-4" A.F.F.
 - 4. Install counter-top receptacles at 8" above the counter, measured to the bottom of the box. Where this dimension interferes with back-splash or upper cabinets, consult the Architect for exact placement.
 - 5. All mounting height requirement shall be maintained within a ¼" tolerance. Refer to the drawings for all other outlet elevations.
- C. Install boxes (covers) flush in finished walls and ceilings when connecting to concealed raceways.
 - 1. Provide plaster rings for boxes to suit adjacent construction and device to be installed. Install boxes not more than 1/8" back from finished walls.
 - 2. Boxes that are installed crooked, more than 1/8" back from wall, or sticking out beyond surface of wall shall be reworked at the discretion of the engineer without additional cost.
 - 3. Above ceiling surface boxes that are installed "floating" off of the wall due to improper conduit rough-in methods shall be reworked at the discretion of the engineer without additional cost.
- D. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel. Rated walls require back to back outlets to be spaced a minimum of 24" apart horizontally.
- E. Locate boxes so that cover or plate will not span different building finishes.
- F. Install wall boxes to study using a horizontal, adjustable mounting bracket spanned between and attached to both study.
- G. Install all light switch boxes on the latch side of door. Verify door swings prior to rough in.
- H. Locate boxes in columns to be "off center" to allow for future furniture partitioning, such as open office settings.
- I. Install boxes level and plumb and true to finish lines in a secure and substantial manner.
- J. Install additional pull boxes and junction boxes where needed to prevent damage to wires and cables during pulling. All pull boxes and junction boxes shall be accessible.
- K. Provide blank plates for all junction boxes, pull boxes, and outlet boxes (not being used).
- L. Only remove the knockout(s) associated with the raceway(s) entering and exiting the box. Plug all unused knockout openings with appropriate plug to match box construction.
- M. Install outlets for water coolers to be concealed but accessible. Coordinate with water cooler manufacturer and/or the Mechanical Contractor.
- N. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
- O. Set metal floor boxes level and flush with finished floor surface.
- P. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

- Q. Provide 1" minimum empty raceway (for low voltage) stubbed to accessible ceiling cavity for all multiservice floor boxes, unless noted otherwise to have larger raceway.
- R. All coverplates shall be installed parallel and perpendicular to finish lines and shall completely cover openings separating finished and unfinished areas. The Electrical Contractor shall notify the General Contractor of all locations where faulty work by other trades will not allow coverplates to cover (gaps, holes or spaces).

3.4 INSTALLATION OF UNDERGROUND CONDUIT

- A. Direct-Buried Conduit:
 - 1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 312000 "Earth Moving" for pipe less than 6 inches in nominal diameter.
 - 2. Install backfill as specified in Section 312000 "Earth Moving."
 - 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."
 - 4. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.
 - a. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.
 - 5. Underground feeders and service entrance raceways: Install manufactured rigid steel or fiberglass 90's and sweeps when using PVC underground.
 - 6. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."

3.5 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.6 PROTECTION

- A. Protect coatings, finishes, and cabinets from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.

3.7 CLEANING

A. On completion of installation, including outlet fittings and devices, inspect exposed finish. Remove burrs, dirt, and construction debris and repair damaged finish, including chips, scratches, and abrasions.

IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Identification for raceways.
 - 2. Identification of power and control cables.
 - 3. Identification for conductors.
 - 4. Underground-line warning tape.
 - 5. Warning labels and signs.
 - 6. Instruction signs.
 - 7. Equipment identification labels.
 - 8. Miscellaneous identification products.

PART 2 - PRODUCTS

2.1 POWER RACEWAY IDENTIFICATION MATERIALS

- A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.
- B. Colors for Raceways Carrying Circuits at 600 V or Less:
 - 1. Black letters on an orange field.
 - 2. Legend: Indicate voltage and system or service type.
- C. Self-Adhesive Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.
- D. Snap-Around Labels for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

2.2 CONDUCTOR IDENTIFICATION MATERIALS

- A. Color-Coding Conductors: Color shall be factory applied over the entire length of conductor. This includes all conductor sizes.
- B. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

2.3 FLOOR MARKING TAPE

A. 2-inch- (50-mm-) wide, 5-mil (0.125-mm) pressure-sensitive vinyl tape, with black and white stripes and clear vinyl overlay.

2.4 UNDERGROUND-LINE WARNING TAPE

- A. Tape:
 - 1. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 - 2. Printing on tape shall be permanent and shall not be damaged by burial operations.

3. Tape material and ink shall be chemically inert, and not subject to degrading when exposed to acids, alkalis, and other destructive substances commonly found in soils.

B. Color and Printing:

- 1. Comply with ANSI Z535.1 through ANSI Z535.5.
- 2. Inscriptions for Red-Colored Tapes: ELECTRIC LINE, HIGH VOLTAGE.
- 3. Inscriptions for Orange-Colored Tapes: TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE.

2.5 WARNING LABELS AND SIGNS

- A. Comply with NFPA 70 and 29 CFR 1910.145.
- B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.
- C. Metal-Backed, Butyrate Warning Signs:
 - 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch (1-mm) galvanized-steel backing; and with colors, legend, and size required for application.
 - 2. 1/4-inch (6.4-mm) grommets in corners for mounting.
 - 3. Nominal size, 10 by 14 inches (250 by 360 mm).
- D. Warning label and sign shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."

2.6 NAMEPLATES AND INSTRUCTION SIGNS

- A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch (1.6 mm) thick for signs up to 20 sq. inches (129 sq. cm) and 1/8 inch (3.2 mm) thick for larger sizes. Lettering shall be "machine engraved". Home-made engraved nameplates will not be accepted.
 - 1. Normal Power: Engraved legend with black letters on white face.
 - 2. Emergency Power: Engraved legend with white letters on red face.
 - 3. Punched or drilled for mechanical fasteners.
 - 4. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.7 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Nameplates and Signs: Rivets or stainless-steel machine screws with nuts and flat lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.
- B. Apply identification devices to surfaces that require finish after completing finish work.
- C. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device. Do not use self-adhesive identification for equipment labeling.

- D. Attach signs and nameplates with mechanical fasteners appropriate to the location and substrate.
- E. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas. Apply the following colors to the systems listed below:

1. Fire Alarm System: Red

2. Security System: Yellow

3. Telecommunication System: Blue

- F. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches (150 to 200 mm) below finished grade. Use multiple tapes where width of multiple lines installed in a common trench exceeds 16 inches (400 mm) overall. Install underground-line warning tape for both direct-buried cables and cables in raceway.
- G. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application. Paint all Fire Alarm junction boxes red.
- H. Lettering, Colors, and Graphics: Coordinate names, abbreviations, colors, and other designations with corresponding designations in the Contract Documents or with those required by codes and standards. Use consistent designations throughout Project.

3.2 IDENTIFICATION SCHEDULE

- A. Circuit Identification Labels on Boxes: Install labels externally. Includes all receptacle coverplates/boxes.
 - 1. Exposed Boxes/coverplates: Pressure-sensitive, self-adhesive vinyl label on cover (1/8" black letters on clear tape).
 - 2. Concealed Boxes: Permanent black marker.
 - 3. Labeling Legend: Permanent, waterproof listing of panel and circuit number.
- B. Accessible Raceways, 600 V or Less, for Service, Feeder, and Branch Circuits More Than **30** A, and **120** V to ground: Install labels at **30-foot** (**9-m**) maximum intervals.
 - 1. Label shall Include voltage, amperage and panel I.D.
- C. Power-Circuit Conductor Identification, 600 V or Less:
 - 1. Color-code throughout the electrical system. Color-Coding for Phase and Voltage Level Identification, Use colors listed below; Color shall be factory applied over the entire length of conductor.
 - a. Colors for 208/120-V Circuits:

Phase A: Black.

Phase B: Red.

Phase C: Blue.

Neutral: White.

Ground: Green.

Isolated Ground: Green with yellow stripe.

b. Colors for 480/277-V Circuits:

Phase A: Brown.

Phase B: Orange.

Phase C: Yellow.

Neutral: White with a colored stripe or gray.

Ground: Green.

- D. Install instructional sign including the color-code for grounded and ungrounded conductors using engraved plastic-laminated labels.
- E. Conductors to Be Extended in the Future: Attach write-on tags to conductors and list source.
- F. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
 - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 - 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
 - 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual.
- G. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall be as required by NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.
- H. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.
 - 1. Comply with 29 CFR 1910.145.
 - 2. Identify system voltage with black letters on an orange background.
 - 3. Apply to exterior of door, cover, or other access.
- I. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.
- J. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch- (10-mm-) high letters for emergency instructions at equipment used for power transfer or power disconnect.
- K. Equipment Identification Labels (Nameplates): Engraved plastic laminate. Install on each unit of equipment, including central or master unit of each system. This includes power, lighting, communication, signal, and alarm systems, unless units are specified with their own self-explanatory identification. Apply nameplates for each unit of the following categories of equipment using mechanical fasteners (adhesive labels for equipment identification is not acceptable). All nameplates shall adequately describe the function or use of the particular equipment involved.
 - 1. Panelboards, switchgear, switchboards and enclosures; Include panel designation, amperage, voltage, phase, color coding of phases, and A.I.C. rating. See detail on plans.
 - 2. Access doors and panels for concealed electrical items. Motor-control centers.
 - 3. Disconnect switches; Include size & type of fuse used if fusible.
 - 4. Enclosed circuit breakers.
 - 5. Motor starters.
 - 6. Push-button stations.
 - 7. Power transfer equipment.
 - 8. Contactors.
 - 9. Transformers.

LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following types of dry-type transformers rated 600 V and less, with capacities up to 1000 KVA:
 - 1. Distribution transformers.
 - 2. Buck-boost transformers.

1.2 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with IEEE C57.12.91, "Test Code for Dry-Type Distribution and Power Transformers."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Eaton Electrical Inc.</u>; <u>Cutler-Hammer Products</u>.
 - 2. Siemens Energy & Automation, Inc.
 - 3. Square D; Schneider Electric.
 - 4. GE; ABB

2.2 GENERAL TRANSFORMER REQUIREMENTS

- A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
- B. Cores: Grain-oriented, non-aging silicon steel.
- C. Coils: Continuous windings without splices except for taps.
 - 1. Internal Coil Connections: Brazed or pressure type.
 - 2. Coil Material: Copper.

2.3 DISTRIBUTION TRANSFORMERS

- A. Comply with NEMA ST 20, and list and label as complying with UL 1561. Sound level shall not exceed 50db of any transformer size.
- B. Cores: One leg per phase.
- C. Enclosure: Ventilated, NEMA 250, Type 2.
 - 1. Core and coil shall be encapsulated within resin compound, sealing out moisture and air.
- D. Transformer Enclosure Finish: Comply with NEMA 250.
 - 1. Finish Color: Gray.

- E. Taps for Transformers 7.5 to 24 kVA: One 5 percent tap above and one 5 percent tap below normal full capacity.
- F. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.
- G. Insulation Class: 220 deg C, UL-component-recognized insulation system with a maximum of **150** deg C rise above 40 deg C ambient temperature.
- H. Energy Efficiency for Transformers Rated 15 kVA and Larger:
 - 1. Complying with NEMA TP 1, Class 1 efficiency levels.
 - 2. Tested according to NEMA TP 2.
- I. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for nonsinusoidal load current-handling capability to the degree defined by designated K-factor.
 - 1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor.
 - 2. Indicate value of K-factor on transformer nameplate.
- J. Wall Brackets: Manufacturer's standard brackets.

2.4 BUCK-BOOST TRANSFORMERS

- A. Description: Self-cooled, two-winding dry type, rated for continuous duty and with wiring terminals suitable for connection as autotransformer. Transformers shall comply with NEMA ST 1 and shall be listed and labeled as complying with UL 506 or UL 1561.
- B. Enclosure: Ventilated, NEMA 250, Type 2.
 - 1. Finish Color: **Gray**.

2.5 IDENTIFICATION DEVICES

A. Nameplates: Engraved, laminated-plastic or metal nameplate. Nameplates are specified in Section 260553 "Identification for Electrical Systems."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install wall-mounting transformers level and plumb with wall brackets fabricated by transformer manufacturer.
- B. Install distribution transformers level on concrete house-keeping pad.
- C. Install suspended transformers level and plumb from structure using 1/2" dia. (minimum) all-thread rod. See transformer mounting detail on plans.
- D. Follow all manufacturers installation instructions.

3.2 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. Follow NECA 90, Annex A Electrical Testing Procedures.
 - 3. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.

- a. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration. Follow instructions of test equipment used.
- b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each transformer 11 months after date of Substantial Completion.
- c. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.

3.3 ADJUSTING

- A. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 10 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.
- B. Connect buck-boost transformers to provide nameplate voltage of equipment being served, plus or minus 5 percent, at secondary terminals.
- C. Output Settings Report: Prepare a written report recording output voltages and tap settings.

PANELBOARDS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes distribution panelboards and lighting and appliance branch-circuit panelboards.

1.2 SUBMITTALS

- A. Product Data: For each type of panelboard, overcurrent protective device, TVSS device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Enclosure types and details for types other than NEMA 250, Type 1.
 - b. Bus configuration, current, and voltage ratings.
 - c. Integrated Short-circuit current rating of panelboards and overcurrent protective devices.
 - d. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - 2. Wiring Diagrams: Diagram power, signal, and control wiring and differentiate between manufacturer-installed and field-installed wiring.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NEMA PB 1.
- C. Comply with NFPA 70.

1.4 COORDINATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls, including electrical and other types of equipment, raceways, piping, and encumbrances to workspace clearance requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

- A. Refer to the drawings for Voltage, Amperage, Mains rating type/size, flush or surface mount, and AIC integral rating of each panelboard.
- B. All electrical distribution equipment shall be of one manufacturer, unless specifically noted otherwise or approved by the Engineer.
- C. Enclosures: Flush- and surface-mounted cabinets.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.

Panelboards Page 1 of 7 Section 262416

- b. Outdoor Locations: NEMA 250, Type 3R.
- c. Kitchen Areas: NEMA 250, stainless steel.
- d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
- 2. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.
 - a. For surface-mounted applications, front cover shall match box dimensions.
 - b. For flush-mounted applications, front cover shall overlap box dimensions by at least 3/4".
- 3. Directory Card: Inside panelboard door, mounted in transparent card holder.
- 4. Enclosures for interiors rated less than 225A shall not be ventilated.
- 5. Finish: Manufacturer's standard enamel finish over corrosion-resistant treatment or primer coat
- D. Incoming Mains Location: Top and bottom refer to drawings.
- E. Phase, Neutral, and Ground Buses: Tin-plated aluminum or Hard-drawn copper, 98 percent conductivity.
 - 1. Bus arrangements shall be standard for the manufacturer (alternate phasing for each consecutive1-pole branch circuit space).
 - 2. All panelboards shall be "fully bussed" where indications of "space only" are shown on the drawings or where future devices could be mounted.
 - 3. Multiple section panelboards shall maintain full sized bus rating across <u>all</u> sections.
 - 4. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment ground conductors; bonded to box
 - 5. Isolated Equipment Ground Bus: Adequate for branch-circuit isolated equipment ground conductors; insulated from box (as indicated on the drawings).
 - 6. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and UL listed as suitable for nonlinear loads (as indicated on the drawings).
- F. Conductor Connectors: Suitable for use with copper conductors and sizes indicated.
 - 1. Material: Tin-plated aluminum or Hard-drawn copper, 98 percent conductivity.
 - 2. Main and Neutral Lugs: Compression or Mechanical type.
 - 3. Ground Lugs and Bus Configured Terminators: Mechanical type.
 - 4. Feed-Through Lugs: Compression or Mechanical type, suitable for use with copper conductors. Locate at opposite end of bus from incoming lugs or main device.
 - 5. Subfeed (Double) Lugs: Compression or Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
- G. Service Equipment Label: NRTL labeled for use as service equipment for panelboards with one or more main service disconnecting and overcurrent protective devices.
- H. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
- I. Gutters: Arrange to isolate individual panel sections. Provide oversized gutters as required for sub-feed conductors or other large conductor situations. Field verify extra space requirements.
- J. Panelboard Short-Circuit Current Rating: Each device within a panelboard shall be rated to interrupt a symmetrical short-circuit current level indicated in the panelboard schedule on the drawings. Do not use series ratings for devices within a panelboard.
 - 1. Minimum "integrated" ratings (fully rated) unless noted otherwise in the panelboard schedule on the drawings:
 - a. 240V (and less) lighting and appliance panelboards: 10,000 AIC

Panelboards Page 2 of 7 Section 262416

- b. 277/480V lighting and appliance panelboards: 18,000 AIC
- c. 208V power distribution panelboards: 100,000 AIC
- d. 480V power distribution panelboards: 65,000 AIC

2.2 DISTRIBUTION PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

Square D. ARB Cutler-Hammer Siemens

		Square D	ADD Cut	ici -iiaiiiiici	bicincis	
600V (1200A max)	(FUSES)	QMB	SPECTRA	PRL4	P4/5	
	(BREAKERS)	I-LINE	RELIAGEAR next	PRL4	P4/5	

- B. Panelboards: NEMA PB 1, power and feeder distribution type.
- C. Doors: Secured with vault-type latch with tumbler lock; keyed alike; provide two (2) spare keys for each type of panelboard cabinet lock. Provided door-in-door construction with concealed hinges for all distribution panelboards
- D. Mains: As shown on drawings.
- E. Branch Overcurrent Protective Devices: As shown on drawings.
 - 1. For Circuit-Breakers of all sizes: Bolt-on circuit breakers.
 - 2. ON and OFF positions clearly marked; switch cover shall be interlocked with handle to prevent opening when handle is in the ON position (a defeat mechanism shall be provided to allow authorized personnel to open the switch while in the ON position).
 - 3. Switches shall be capable of accepting heavy duty padlocks.
 - 4. All fusible branch switches shall be quick-make, quick-break, with visible blades and dual horsepower ratings.

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

Square D. ARB. Cutler-Hammer Siemens

	Square D	ABB	Cutler-Hammer	Siemens	_
240V (400A max)	NQOD	RQ	PRL1	P2	
480/277V (400A max)	NF	RE	PRL2	P2	

- B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- C. Mains: As shown on drawings.
- D. Branch Overcurrent Protective Devices: As shown on drawings.
 - 1. For Circuit-Breakers of all sizes: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
 - 2. Two and three pole breakers shall be of the common trip type (do not use single pole breakers with tie handles).
- E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike, provide two (2) spare keys for each type of panelboard cabinet lock. Provided door-in-door construction with concealed hinges for all panelboards.

- F. Surge Protective Device (SPD) TYPE 2
 - 1. SPD Device: IEEE C62.41, UL 1449 Third Edition Listed, integrally mounted, bolt-on style (6" max. lead length), solid-state, parallel-connected, modular SPD. The UL 1449 Third Edition Listed Suppression Ratings shall be used (not the product's independent performance rating).
 - a. Minimum current rating shall be as follows:

1) Line to Line: 160,000 A
2) Line to Neutral: 80,000 A
3) Line to Ground: 80,000 A
4) Neutral to Ground: 80,000 A

- b. Protection modes shall be as follows:
 - 1) Line to neutral
 - 2) Line to ground
 - 3) Neutral to ground
- c. EMI/RFI Noise Attenuation Using 50-ohm Insertion Loss Test: 30 dB at 100 kHz.
- d. Category C combination wave clamping voltage shall not exceed 700 V, line to neutral, line to ground, and neutral to ground on 120/208 V systems.
- e. Maximum Continuous Operating Voltage (MCOV) rating shall not exceed 150V on 120/208 V systems.
- f. Withstand Capabilities: UL1449 3rd edition listed at 20kA I_n per mode TYPE 2 SPD.
- g. Accessories shall include the following:
 - 1) Form-C contacts, one normally open and one normally closed, for remote monitoring of system operation. Contacts to reverse position on failure of any surge diversion module.
 - 2) Audible alarm with battery back-up and alarm test switch; activated on failure of any surge diversion module, or low battery.
 - 3) Externally mounted LED visual indicators for each phase; indicating full protection or no protection.
 - 4) Six-digit transient-counter set to total transient surges that deviate from the sine-wave envelope by more than 125 V.
- h. The unit shall carry a minimum Ten (10) -Year Warranty.
- i. UL 1449 Third Edition suppression ratings of the submitted device shall be submitted with the panelboard shop drawings.
- j. Panelboards with TVSS protection shall be of the same manufacturer as all other panelboards associated with the project.
- G. All main distribution panelboards shall receive Surge Protection Device (SPD).
- H. All emergency panelboards shall receive Surge Protection Device (SPD).

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet AIC rating of associated panelboard as indicated.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.

Panelboards Page 4 of 7 Section 262416

- 3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long- and short-time time adjustments.
 - d. Ground-fault pickup level, time delay, and I²t response.
- 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
- 5. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
- 6. Ground-Fault Equipment Protection (GFEP) Circuit Breakers: Class B ground-fault protection (30-mA trip).
- 7. Arc-Fault Circuit Interrupter (AFCI) Circuit Breakers: Comply with UL 1699; 120/240-V, single-pole configuration.
- 8. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 - c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 - d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - e. Communication Capability: Integral communication module with functions and features compatible with power monitoring and control system specified in Section 260913 "Electrical Power Monitoring and Control."
 - f. Shunt Trip: 120V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.
 - g. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in off position.
 - h. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position. Provide for fire alarm circuit breaker.
- B. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
 - Fuses, and Spare-Fuse Cabinet: Comply with requirements specified in Section 262813 "Fuses."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Consult Utility Co. for coordination of the primary and secondary service requirements. The Electrical Contractor shall provide all labor and material required by the Utility Co. for both temporary and permanent electrical service for this project. Verify all costs with the Utility Co. prior to bidding this project.
- B. Install lightning surge arresters on main service entrance per manufacturers installation instructions (Square D Cat. No. SDSA1175 or SDSA3650 or equal). Refer to plans for voltage and phasing of service.
- C. Receive, inspect, handle, store and install panelboards and accessories according to NEMA PB 1.1.
- D. Mount top of trim 84 inches above finished floor unless otherwise indicated. In no case shall the highest over-current protective device handle exceed 79" above the finished floor.

Panelboards Page 5 of 7 Section 262416

- E. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- F. Provide a 4" concrete house-keeping pad for all floor mounted power distribution panelboards.
- G. Install overcurrent protective devices and controllers not already factory installed.
 - 1. Set field-adjustable, circuit-breaker trip ranges consult with the engineer.
- H. Install filler plates in unused spaces.
- I. Ensure that panelboard doors & latches operate smoothly.
- J. Provision for Future Circuits at Flush Panelboards: Stub two 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future.
- K. Wiring in Panelboard Gutters: Neatly arrange conductors into groups. Form, bundle and wrap with wire ties after completing load balancing.
- L. Comply with NECA 1.
- M. Panelboard layouts on the drawings are based upon one manufacturer. Verify dimensions of proposed manufacturer's equipment for compliance with layout shown on the drawings prior to bidding. Any required layout changes due to larger equipment sizes shall be submitted to the Engineer prior to bidding. NFPA 70 working clearances shall be maintained at all times.

3.2 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Section 260553 "Identification for Electrical Systems."
- B. Create a directory to indicate installed circuit loads and incorporating Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories and photocopies of the panelboard schedules from the drawings are not acceptable.
- C. Panelboard Nameplates: Label each panelboard with a phenolic, engraved nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- D. Device Nameplates: Label each branch circuit device in distribution panelboards with a phenolic, engraved nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Follow NECA 90, Annex A Electrical Testing Procedures.
 - 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove panel fronts so joints and connections are accessible to portable scanner.

Panelboards Page 6 of 7 Section 262416

- a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device. Follow instructions of test equipment used.
- b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
- 4. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- D. Panelboards will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken and observations after remedial action.
- F. CLEANING: On completion of installation, inspect interior and exterior of panelboards. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish.

WIRING DEVICES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Receptacles.
 - 2. Wall switches
 - 3. Wall-box dimmers.
 - 4. Wall plates.
 - 5. Fustats

1.2 **DEFINITIONS**

- A. GFCI: Ground-fault circuit interrupter.
- B. IG: Isolated Ground
- C. TVSS: Transient voltage surge suppressor.
- D. AF: Arc Fault
- E. USB: USB charging receptacle
- F. TR: Tamper Resistant

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Receptacles:

 	P & S	Hubbell	Leviton	Arrow-Hart	
Duplex:	5352	5352AB	5362	5362	
Single:	5361	HBL5361	5361	5361	
GFCI:	2097	GFRST20	G5362-0T	SGF20	
IG:	IG6300	IG5352	5862-IG	IG5362	
TVSS w/IG:	IG5362-SP	IG5362SA	5380-IG	IG5362S	
Tamper Res.:	TR5352	BR20TR	5362-SG	TRSGF20	
USB Charging:	TR5362USB	USB20A5	M58AA	TR7756	
ARC Fault:	AF20DFW	AFR20TR	AFTR2	TRAFCI20	
USB w/ GFCI:	2097TRUSB				

B. Switches:

	<u>P & S</u>	Hubbell	Leviton	<u>Arrow-Hart</u>	
Toggle 1-pole:	CSB120	CS1221	CSB1-20	CSB120	
Toggle 3-Way:	CSB320	CS1223	CSB3-20	CSB320	
Toggle 4-Way:	CSB420	CS1224	CSB4-20	CSB420	
Key 1-pole:	20AC1-L	HBL1221L	1221-2L	AH1221L	
Toggle Pilot 1P:	20AC1-RPL	HBL1221PL	1221-PLR	AH1221PL	

- C. Shunt Trip Switches:
 - 1. Pushbutton, mushroom head, 2-position switch. **Square D #9001KR9RH13.**
 - 2. Enclosure. Square D #9001KY1.
 - 3. Locking mechanism. **Square D #9001K62**.

2.2 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.
- B. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. All receptacles listed above shall be grounded, with back & side wired terminations, and rated at 20A-125V. All receptacles shall be constructed using a High-Impact Thermoplastic material and shall carry the Federal Specification mark. Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, UL 943 Class A and FS W-C-596.
- D. All receptacles shown on the drawings with a weather-proof indication "WP" are to be GFCI devices mounted under a raintight coverplate. Use heavy duty, cast aluminum, single-gang, vertical mount, for "while in use" protection. All exterior GFCI receptacles shall bear an "outdoor/weather proof" rating.
- E. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.
- F. Refer to the drawings for special outlet configuration specifications (special outlet schedule).
- G. All switches listed above shall be 20A, back & side wired, provided with a ground terminal, quiet operating, and rated for the voltage indicated on the drawings. Comply with NEMA WD 1, UL 20, and FS W-S-896.
- H. Provide all pilot light switches with a red illuminated toggle in the on position.
- I. Provide all key switches keyed alike for master key operation.
- J. Refer to the drawings for special switch/control applications.
- K. Comply with NFPA 70.
- L. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.
 - 1. Compatibility:
 - a. Dimming control components shall be compatible with lighting fixtures, drivers, and transformers.

- b. Coordinate with actual lighting submittals to ensure compatible dimmers are utilized.
- M. Control: Continuously adjustable slider; with single-pole or three-way switching as required. Comply with UL 1472.
- N. LED Lamp Dimmer Switches: Verify with LED lighting manufacturer for list of compatible dimmers.

2.3 WALL PLATES

- A. Single and combination types shall match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material: 0.035-inch-thick, satin-finished, Type 302 stainless steel.
 - 3. Material for Damp Locations: Thermoplastic with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.
- B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.

2.4 FINISHES

- A. Device Color:
 - 1. Wiring Devices Connected to Normal Power System: Almond, Black, Brown, Gray, Ivory, or White **as selected by Architect** unless otherwise indicated or required by NFPA 70 or device listing.
 - 2. Wiring Devices Connected to Emergency Power System: Red.
 - 3. TVSS Devices: Blue.
- B. Wall Plate Color: For plastic covers, match device color.

2.5 FUSTATS

- A. Provide fustat devices for motor protection (local disconnect and over-current) as follows:
 - 1. ½ HP-120V or less: Bussmann "SSY".
 - 2. ¾ HP-120V: Bussmann "SOY"
- B. Mount fustat(s) inside, on, or adjacent to housing of equipment served. Size fuses at 125% of motor F.L.A. or as recommended by the manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1.
- B. Verify all locations on the job prior to rough in. Locations (not quantities) may be altered by the Architect prior to rough in without additional cost to the Owner.
- C. Coordination with Other Trades:
 - 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 - 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.

- 4. Install counter-top receptacles at 8" above the counter, measured to the bottom of the box. Where this dimension interferes with back-splash or upper cabinets, consult the Architect for exact placement.
- 5. Install wiring devices after all wall preparation, including painting, is complete.

D. Conductors:

- 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
- 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
- 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
- 4. Do not share neutral conductors on any device branch circuit. (separate neutral conductor for each phase conductor).

E. Device Installation:

- 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
- 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
- 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
- 4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
- 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
- 6. Connect wiring device grounding terminal to branch-circuit equipment grounding conductor and to box.
- 7. Isolated-Ground Receptacles: Connect wiring device grounding terminal to isolated-ground conductor routed to designated isolated equipment ground terminal of electrical system.
- 8. Use a torque screwdriver when a torque is recommended or required by manufacturer.
- 9. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
- 10. Tighten unused terminal screws on the device.
- 11. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.
- 12. Install devices and assemblies plumb and secure.
- 13. Install non-feed-through-type GFCI receptacles. Do not use one GFCI device to downstream protect another device (feed-through method).

F. Receptacle Orientation:

1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right.

G. Device Types:

- 1. Use tamper resistant receptacles in all areas required by the National Electrical Code.
- 2. Use hospital grade receptacles in all areas required by the National Electrical Code.
- 3. Use GFCI receptacles in all areas required by the National Electrical Code. Note: use GFCI circuit breaker in lieu of GFCI receptacle where receptacle is not readily accessible.
- 4. Use AFCI receptacles in all areas required by the National Electrical Code.

H. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

I. Dimmers:

- 1. Install dimmers within terms of their listing.
- 2. Install wall dimmers to achieve indicated rating after derating for ganging as instructed by manufacturer.
- 3. Verify that dimmers used are listed for the load application.
- 4. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.
- J. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multi-gang wall plates.
- K. Adjust locations of floor service outlets and telephone/power service poles to suit arrangement of partitions and furnishings.

3.2 IDENTIFICATION

- A. Switches: Where three or more switches are ganged, and elsewhere as indicated, identify each switch with approved legend engraved on wall plate.
- B. Receptacles: Identify panelboard and circuit number from which served. Use machine-printed, pressure-sensitive, abrasion-resistant label tape on face of plate (black text on clear tape) and durable wire markers or tags within outlet boxes.

3.3 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Test Instruments: Use instruments that comply with UL 1436.
 - 2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
- B. Tests for Receptacles:
 - 1. Line Voltage: Acceptable range is 115 to 125 V.
 - 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 - 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 - 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 - 5. Check TVSS receptacle indicating lights for normal indication.
 - 6. Using the test plug, verify that the device and its outlet box are securely mounted.
 - 7. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
- C. Wiring device will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

FUSES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes: Cartridge fuses rated 600-V ac and less for use in control circuits, enclosed switches, panelboards, switchboards, enclosed controllers, and motor-control centers.

1.2 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NEMA FU 1 for cartridge fuses.
- C. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

Subject to compliance with requirements, provide products by one of the following:

	Gould-Shawmut	Bussmann	LittleFuse	Edison
Class J:	AJT	LPJ	JTD	JDL
(600A or less; 600V or	less)			
Class L:	A4BQ	KRP-C	KLPC	LCL
(over 600A; 600V or le	ss)			

2.2 CARTRIDGE FUSES

- A. Characteristics: NEMA FU 1, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.
- B. Only one (1) manufacturer will be allowed to supply fuses associated with this project. <u>Do not intermix</u> fuse manufacturers.
- C. Fuses for motor loads shall be sized from the nameplate data on the motor per NFPA 70. Notify Engineer of any discrepancies.
- D. Provide (3) spare fuses of each size in original packages for Owner's future use. Store these spare fuses in a new fuse cabinet Gould Shawmut cat. No. GSFC-M (or equal). Mount fuse cabinet near service entrance point of main disconnect.

PART 3 - EXECUTION

3.1 FUSE APPLICATIONS

- A. Service Entrance: Class L, time delay and Class J, time delay according to amperage and application.
- B. Feeders: Class J, time delay.
- C. Motor Branch Circuits: Class J, time delay.
- D. Other Branch Circuits: Class J, time delay.

Fuses Page 1 of 2 Section 262813

E. Control Circuits: Class CC, fast acting.

3.2 INSTALLATION

- A. Check for proper fuse clip provisions (clip spacing/types) prior to installing fuses.
- B. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.3 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information on inside door of each fused switch and adjacent to each fuse block and holder.

End of Section 262813

Fuses Page 2 of 2 Section 262813

ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Shunt trip switches.
 - 4. Molded-case circuit breakers (MCCBs).
 - Enclosures.

1.2 **DEFINITIONS**

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 FUSIBLE AND NONFUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: Cutler-Hammer; Siemens; Square D; GE
- B. Type HD, Heavy Duty, Single Throw, 240 or 600-V ac (as indicated), 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, quick-make and quick-break type, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position. Handle defeat feature for opening switch cover while energized by authorized personnel.

C. Accessories:

- 1. Equipment Ground Kit: Internally mounted and labeled for copper ground conductors.
- 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper neutral conductors.
- 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
- 4. Lugs: Suitable for number, size, and conductor material.
- 5. Service-Rated Switches: Labeled for use as service equipment.

2.2 SHUNT TRIP SWITCHES (elevators)

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: Cooper Bussmann, Inc., Ferraz Shawmut, Inc, Littlefuse Inc.

- B. General Requirements: Comply with ASME A17.1, UL 50, and UL 98, with 200-kA interrupting and short-circuit current rating when fitted with Class J fuses.
- C. Switches: Three-pole, horsepower rated, with integral shunt trip mechanism and Class J fuse block; lockable handle with capability to accept three padlocks; interlocked with cover in closed position.
- D. Control Circuit: 120-V ac; obtained from integral control power transformer, with primary and secondary fuses, of enough capacity to operate shunt trip, connected pilot, and indicating and control devices.

E. Accessories:

- 1. Oil tight key switch for key-to-test function.
- 2. Oil tight ON pilot light.
- 3. Isolated neutral lug.
- 4. Mechanically interlocked auxiliary contacts that change state when switch is opened and closed.
- 5. Form C alarm contacts that change state when switch is tripped.
- 6. Three-pole, double-throw, fire-safety and alarm relay; 24-V dc coil voltage.
- 7. Three-pole, double-throw, fire-alarm voltage monitoring relay complying with NFPA 72.

2.3 MOLDED-CASE CIRCUIT BREAKERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: Cutler-Hammer; Siemens; Square D; GE
- B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.
- C. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuitbreaker frame sizes 250 A and larger.
- D. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 - 1. Instantaneous trip.
 - 2. Long- and short-time pickup levels.
 - 3. Long- and short-time time adjustments.
 - 4. Ground-fault pickup level, time delay, and I²t response.
- E. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.
- F. Features and Accessories:
 - 1. Standard frame sizes, trip ratings, and number of poles.
 - 2. Lugs: Suitable for number, size, trip ratings, and conductor material.
 - 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 - 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 - 5. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
 - 6. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
 - 7. Alarm Switch: One **NO** contact that operates only when circuit breaker has tripped.

2.4 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 3R.
 - 3. Kitchen Areas: NEMA 250, stainless steel.
 - 4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 - 5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
- B. Manufacturer's standard prime-coat finish ready for field painting.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Examine elements and surfaces to receive enclosed switches for compliance with installation tolerances and other conditions affecting performance.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.
- B. Check for proper fuse clip provisions (clip spacing/types) prior to installing fuses. Install fuses in fusible devices.
- C. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- D. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- E. Comply with NECA 1.

3.2 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.3 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each line and load side circuit.
- C. Tests and Inspections:
 - 1. Follow NECA 90, Annex A Electrical Testing Procedures.

- 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- 3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Open or remove doors or panels so connections are accessible to portable scanner.
 - a. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each unit 11 months after date of Substantial Completion.
 - b. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device. Follow instructions of test equipment used.
- 4. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- D. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

F. CLEANING

1. On completion of installation, inspect interior and exterior of enclosures. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish.